A Multi-Scale Vectorial Lτ-TV Framework for Color Image Restoration

A general multi-scale vectorial total variation model with spatially adapted regularization parameter for color image restoration is introduced in this paper. This total variation model contains an Lτ-data fidelity for any τ∈[1,2]. The use of a spatial dependent regularization parameter improves the reconstruction of features in the image as well as an adequate smoothing for the homogeneous parts. The automated adaptation of this regularization parameter is made according to local statistical characteristics of the noise which contaminates the image. The corresponding multiscale vectorial total variation model is solved by Fenchel-duality and inexact semismooth Newton techniques. Numerical results are presented for the cases τ=1 and τ=2 which reconstruct images contaminated with salt-and-pepper noise and Gaussian noise, respectively.

[1]  M. Burger,et al.  Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions , 2008 .

[2]  Yiqiu Dong,et al.  Multi-scale Total Variation with Automated Regularization Parameter Selection for Color Image Restoration , 2009, SSVM.

[3]  Andrés Almansa,et al.  A TV Based Restoration Model with Local Constraints , 2008, J. Sci. Comput..

[4]  N. Sochen,et al.  Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .

[5]  Michael Hintermüller,et al.  An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..

[6]  Tony F. Chan,et al.  Scale Recognition, Regularization Parameter Selection, and Meyer's G Norm in Total Variation Regularization , 2006, Multiscale Model. Simul..

[7]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[8]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[9]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[10]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[11]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[12]  J. Wolfowitz,et al.  An Introduction to the Theory of Statistics , 1951, Nature.

[13]  Frank H. Clarks Convex Analysis and Variational Problems (Ivar Ekeland and Roger Temam) , 1978 .

[14]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[15]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[16]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[17]  Wotao Yin,et al.  The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..

[18]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[19]  L. Vese,et al.  MULTISCALE HIERARCHICAL DECOMPOSITION OF IMAGES WITH APPLICATIONS TO DEBLURRING, DENOISING AND SEGMENTATION ∗ , 2008 .

[20]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[21]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[22]  Eitan Tadmor,et al.  A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..

[23]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[24]  Michael Hintermüller,et al.  A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..

[25]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[26]  Karl Kunisch,et al.  Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..

[27]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[28]  Michael Hintermüller,et al.  Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration , 2010 .

[29]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[30]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[31]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[32]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[33]  Tony F. Chan,et al.  Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diiusion in Image Processing , 1996 .

[34]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .