A Multi-Scale Vectorial Lτ-TV Framework for Color Image Restoration
暂无分享,去创建一个
Yiqiu Dong | Michael Hintermüller | M. Monserrat Rincon-Camacho | M. Hintermüller | Yiqiu Dong | M. Rincon-Camacho
[1] M. Burger,et al. Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions , 2008 .
[2] Yiqiu Dong,et al. Multi-scale Total Variation with Automated Regularization Parameter Selection for Color Image Restoration , 2009, SSVM.
[3] Andrés Almansa,et al. A TV Based Restoration Model with Local Constraints , 2008, J. Sci. Comput..
[4] N. Sochen,et al. Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .
[5] Michael Hintermüller,et al. An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..
[6] Tony F. Chan,et al. Scale Recognition, Regularization Parameter Selection, and Meyer's G Norm in Total Variation Regularization , 2006, Multiscale Model. Simul..
[7] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[8] Yiqiu Dong,et al. An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..
[9] Mila Nikolova,et al. Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..
[10] Tony F. Chan,et al. Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..
[11] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[12] J. Wolfowitz,et al. An Introduction to the Theory of Statistics , 1951, Nature.
[13] Frank H. Clarks. Convex Analysis and Variational Problems (Ivar Ekeland and Roger Temam) , 1978 .
[14] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[15] J. Aubin,et al. Applied Nonlinear Analysis , 1984 .
[16] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[17] Wotao Yin,et al. The Total Variation Regularized L1 Model for Multiscale Decomposition , 2007, Multiscale Model. Simul..
[18] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[19] L. Vese,et al. MULTISCALE HIERARCHICAL DECOMPOSITION OF IMAGES WITH APPLICATIONS TO DEBLURRING, DENOISING AND SEGMENTATION ∗ , 2008 .
[20] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .
[21] B. R. Hunt,et al. Digital Image Restoration , 1977 .
[22] Eitan Tadmor,et al. A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..
[23] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[24] Michael Hintermüller,et al. A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..
[25] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[26] Karl Kunisch,et al. Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..
[27] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[28] Michael Hintermüller,et al. Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration , 2010 .
[29] Nikolas P. Galatsanos,et al. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..
[30] T. Chan,et al. Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .
[31] Mila Nikolova,et al. Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..
[32] Wotao Yin,et al. An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..
[33] Tony F. Chan,et al. Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diiusion in Image Processing , 1996 .
[34] I. Ekeland,et al. Convex analysis and variational problems , 1976 .