The SZS Ontologies for Automated Reasoning Software

This paper describes the SZS ontologies that provide status values for precisely describing what is known or has been established about logical data. The ontology values are useful for describing existing logical data, and for automated reasoning software to describe their input and output. Standards for presenting the ontology values are also provided.

[1]  Geoff Sutcliffe,et al.  Smart Selective Competition Parallelism ATP , 1999, FLAIRS Conference.

[2]  Johann Schumann,et al.  Using Automated Theorem Provers to Certify Auto-generated Aerospace Software , 2004, IJCAR.

[3]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[4]  R. Waldinger,et al.  Deductive Biocomputing , 2007, PloS one.

[5]  Geoff Sutcliffe,et al.  The TPTP Problem Library , 1994, Journal of Automated Reasoning.

[6]  Alan Bundy,et al.  Proof Plans for the Correction of False Conjectures , 1994, LPAR.

[7]  Koen Claessen,et al.  Using the TPTP Language for Writing Derivations and Finite Interpretations , 2006, IJCAR.

[8]  Geoff Sutcliffe,et al.  Semantic Derivation Verification , 2005, FLAIRS Conference.

[9]  Geoff Sutcliffe,et al.  THF0 - The Core of the TPTP Language for Higher-Order Logic , 2008, IJCAR.

[10]  J. Hurd First-Order Proof Tactics in Higher-Order Logic Theorem Provers In Proc , 2003 .

[11]  Geoff Sutcliffe,et al.  Multiple Answer Extraction for Question Answering with Automated Theorem Proving Systems , 2009, FLAIRS Conference.

[12]  Michael Kohlhase,et al.  System Description: The MathWeb Software Bus for Distributed Mathematical Reasoning , 2002, CADE.

[13]  Geoff Sutcliffe,et al.  SRASS - A Semantic Relevance Axiom Selection System , 2007, CADE.

[14]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[15]  Michael Travers,et al.  BioLingua: a programmable knowledge environment for biologists , 2005, Bioinform..

[16]  Geoff Sutcliffe,et al.  An Interactive Derivation Viewer , 2007, UITP@FLoC.

[17]  K. Claessen,et al.  New Techniques that Improve MACE-style Finite Model Finding , 2007 .

[18]  Konstantin Korovin,et al.  iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description) , 2008, IJCAR.

[19]  C. Tinelli,et al.  Darwin: A Theorem Prover for the Model Evolution Calculus , 2004 .

[20]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[21]  Andrew Ireland,et al.  Productive use of failure in inductive proof , 1996, Journal of Automated Reasoning.