Transmitter skew tolerance and spectral efficiency tradeoff in high baud-rate QAM optical communication systems.

Residual IQ skew in a coherent transmitter severely degrades the performance of long-haul coherent optical communication systems. The impairment is particularly detrimental for a high baud-rate system using quadrature amplitude modulation (QAM). Furthermore, Nyquist pulse shaping increases the spectral efficiency for WDM systems. However, sharp roll-off of Nyquist pulse shaping further reduces the tolerance to residual IQ skew. Thus, certain trade-offs between spectral efficiency and roll-off factor should be made to improve the tolerance of residual IQ skew. We experimentally studied this trade-off and determined the optimal roll-off factor, channel spacing, receiver bandwidth, and equalizer length. The results serve as a guideline for high baud-rate coherent WDM systems.