CO 2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced Technology Scenarios

.......................................................................................................................................................iii 1.0 Introduction ..................................................................................................................................... 1.1 2.0 Overview of Technical Approach.................................................................................................... 2.3 2.1 Defining Stabilization............................................................................................................. 2.3 2.2 Emissions Pathways to Stabilization...................................................................................... 2.5 2.3 Constructing the Technology Scenarios................................................................................. 2.7 3.0 Modeling Framework and Technology Assumptions...................................................................... 3.1 3.

[1]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[2]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[3]  H. Hotelling The economics of exhaustible resources , 1931, Journal of Political Economy.

[4]  G. Orians,et al.  Global biogeochemical cycles , 1992 .

[5]  J. Edmonds,et al.  Modelling energy technologies in a competitive market , 1993 .

[6]  J. Edmonds,et al.  Economic and environmental choices in the stabilization of atmospheric CO2 concentrations , 1996, Nature.

[7]  W. Edeson Food and Agriculture Organization of the UN , 1996 .

[8]  A. Manne,et al.  On stabilizing CO2 concentrations – cost‐effective emission reduction strategies , 1997 .

[9]  M. Wise,et al.  An Integrated Assessment of Climate Change and the Accelerated Introduction of Advanced Energy Technologies - An Application of MiniCAM 1.0 , 1997 .

[10]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[11]  J. M. Roop,et al.  Combined heat and power: How much carbon and energy can it save for manufacturers? , 1998 .

[12]  Policy Division Our Common Journey:: A Transition Toward Sustainability , 1999 .

[13]  Adib Kanafani,et al.  Air, high-speed rail, or highway: A cost comparison in the California corridor , 1999 .

[14]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[15]  J. Townshend,et al.  A new global 1‐km dataset of percentage tree cover derived from remote sensing , 2000 .

[16]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[17]  W. M. Post,et al.  Soil carbon sequestration and land‐use change: processes and potential , 2000 .

[18]  R. Houghton Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990 , 2001 .

[19]  K. Paustian,et al.  GRASSLAND MANAGEMENT AND CONVERSION INTO GRASSLAND: EFFECTS ON SOIL CARBON , 2001 .

[20]  L. Price,et al.  CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY , 2001 .

[21]  N. Batjes Soil parameter estimates for the soil types of the world for use in global and regional modelling (Version 2.1) , 2002 .

[22]  Kelly N. Ibsen,et al.  Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover , 2002 .

[23]  N. Ramankutty,et al.  Green surprise? How terrestrial ecosystems could affect earth’s climate , 2003 .

[24]  ENERGY EFFICIENCY & INDUSTRIAL BOILER EFFICIENCY An Industry Perspective , 2003 .

[25]  B. McCarl,et al.  Enhancement of Carbon Sequestration in US Soils , 2004 .

[26]  K. Kaygusuz Hydropower and the World's Energy Future , 2004 .

[27]  L. Dixon,et al.  Oil Shale Development in the United States: Prospects and Policy Issues , 2005 .

[28]  B. Sohngen,et al.  Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation , 2005, GTAP Technical Paper Series.

[29]  Greg Barker,et al.  BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint , 2005 .

[30]  Robert Williams,et al.  Creating a Standards Framework for Sustainable Industrial Energy Efficiency , 2005 .

[31]  J. Edmonds,et al.  A first-order global geological CO2-storage potential supply curve and its application in a global integrated assessment model , 2005 .

[32]  Gerald Ondrey,et al.  Gas to liquids , 2005 .

[33]  Robert T. Dahowski,et al.  The role of carbon dioxide capture and storage in reducing emissions from cement plants in North America , 2005 .

[34]  L. Clarke,et al.  Climate Change Mitigation: An Analysis of Advanced Technology Scenarios , 2006 .

[35]  J. Edmonds,et al.  The ObjECTS Framework for Integrated Assessment: Hybrid Modeling of Transportation , 2006 .

[36]  Aie,et al.  Tracking Industrial Energy Efficiency and CO2 Emissions , 2007 .

[37]  L. Clarke,et al.  Managing the transition to climate stabilization , 2007 .

[38]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[39]  G. Marland,et al.  Global, regional, and national fossil fuel CO2 emissions (1751-2004) (an update) , 2007 .

[40]  Stacy Cagle Davis,et al.  Transportation Energy Data Book: Edition 26 , 2007 .

[41]  L. Clarke,et al.  The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions , 2007 .

[42]  S. Petty,et al.  Updated U.S. Geothermal Supply Characterization , 2007 .

[43]  J. Edmonds,et al.  Stabilizing CO2 concentrations with incomplete international cooperation , 2008 .

[44]  J. Dooley,et al.  Large-Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions , 2009 .