Nonintersecting Brownian Excursions

Author(s): Tracy, Craig A.; Widom, Harold | Abstract: We consider the process of $n$ Brownian excursions conditioned to be nonintersecting. We show the distribution functions for the top curve and the bottom curve are equal to Fredholm determinants whose kernel we give explicitly. In the simplest case, these determinants are expressible in terms of Painlev #x27;{e} V functions. We prove that as $n\to \infty$, the distributional limit of the bottom curve is the Bessel process with parameter 1/2. (This is the Bessel process associated with Dyson's Brownian motion.) We apply these results to study the expected area under the bottom and top curves.

[1]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[2]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[3]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[4]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[5]  T. Nagao,et al.  Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov-de Gennes random matrices. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Arno B.J. Kuijlaars,et al.  Large n Limit of Gaussian Random Matrices with External Source, Part I , 2004 .

[7]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[8]  Anthony J. Guttmann,et al.  Vicious walkers, friendly walkers and Young tableaux: II. With a wall , 2000 .

[9]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[10]  Differential Equations for Dyson Processes , 2003, math/0309082.

[11]  C. M. Cosgrove,et al.  Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree , 1993 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Lajos Takács,et al.  A bernoulli excursion and its various applications , 1991, Advances in Applied Probability.

[14]  M. Jimbo,et al.  Monodromy Preserving Deformations Of Linear Differential Equations With Rational Coefficients. 1. , 1981 .

[15]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[16]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[17]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[18]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[19]  P. Moerbeke,et al.  PDEs for the joint distributions of the Dyson, Airy and Sine processes , 2004, math/0403504.

[20]  Satya N. Majumdar,et al.  Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces , 2004, cond-mat/0409566.

[21]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[24]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[25]  Guy Louchard,et al.  Analytic Variations on the Airy Distribution , 2001, Algorithmica.

[26]  S. Hikami,et al.  Spectral form factor in a random matrix theory , 1997 .

[27]  Michael E. Fisher,et al.  Walks, walls, wetting, and melting , 1984 .

[28]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[29]  Asymptotic behaviour of watermelons , 2003, math/0307204.

[30]  Arno B. J. Kuijlaars,et al.  Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions , 2005, J. Approx. Theory.

[31]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[32]  Craig A. Tracy,et al.  The Pearcey Process , 2006 .