Cone-Constrained Principal Component Analysis
暂无分享,去创建一个
[1] Martin J. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, ISIT.
[2] P. Paatero. Least squares formulation of robust non-negative factor analysis , 1997 .
[3] Andrea Montanari,et al. Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.
[4] Emmanuel J. Candès,et al. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.
[5] Xiaodong Li,et al. Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..
[6] B. Nadler,et al. MINIMAX BOUNDS FOR SPARSE PCA WITH NOISY HIGH-DIMENSIONAL DATA. , 2012, Annals of statistics.
[7] Bernd Grtner,et al. Approximation Algorithms and Semidefinite Programming , 2012 .
[8] J R Fienup,et al. Phase retrieval algorithms: a comparison. , 1982, Applied optics.
[9] Yinyu Ye,et al. Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.
[10] Babak Hassibi,et al. Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[11] I. Johnstone,et al. Sparse Principal Components Analysis , 2009, 0901.4392.
[12] Joel A. Tropp,et al. Living on the edge: A geometric theory of phase transitions in convex optimization , 2013, ArXiv.
[13] Marc Teboulle,et al. Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..
[14] B. Nadler,et al. Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .
[15] Yihong Wu,et al. Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.
[16] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[17] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[18] Andrea Montanari,et al. Sparse PCA via Covariance Thresholding , 2013, J. Mach. Learn. Res..
[19] P. Paatero,et al. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .
[20] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[21] Andrea Montanari,et al. The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.
[22] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[23] Amit Singer,et al. A remark on global positioning from local distances , 2008, Proceedings of the National Academy of Sciences.
[24] Andrea Montanari,et al. Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to Minimax Denoising , 2011, IEEE Transactions on Information Theory.
[25] Andrea Montanari,et al. Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics , 2014, IEEE Transactions on Information Theory.