Management of municipal solid waste incineration residues

The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the shortand long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions. # 2002 Elsevier Science Ltd. All rights reserved.

[1]  Grades Doktor-Ingenieur,et al.  Untersuchungen zum langfristigen Verhalten von Siedlungsabfalldeponien , 2000 .

[2]  T. Taylor Eighmy,et al.  Heavy Metal Stabilization in Municipal Solid Waste Combustion Dry Scrubber Residue Using Soluble Phosphate , 1997 .

[3]  S. Tokunaga,et al.  Extraction of heavy metals from MSW incinerator fly ash using saponins. , 2000, Chemosphere.

[4]  J. Meima,et al.  Application of Surface Complexation/Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash , 1998 .

[5]  H. A. van der Sloot,et al.  Characteristics, treatment and utilization of residues from municipal waste incineration. , 2001, Waste management.

[6]  Ole Hjelmar,et al.  An approach to the development of rational limit values for regulatory testing of waste prior to disposal or utilisation , 1999 .

[7]  K. Horch,et al.  Semi-Technical Demonstration of the 3r pRocess , 1990 .

[8]  J. Meima,et al.  The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering , 1999 .

[9]  Patrice Piantone,et al.  Forecasting the long-term behaviour of municipal solid waste incineration bottom ash: rapid combined tests , 2000 .

[10]  Chris Zevenbergen,et al.  Geochemical factors controlling the mobilization of major elements during weathering of MSWI bottom ash , 1994 .

[11]  Hiroshi Takatsuki Conclusions Drawn from an Accidental Explosion at a Dust Bunker. , 1994 .

[12]  L. B. Owens Geochemical Processes, Weathering and Groundwater Recharge in Catchments , 1998 .

[13]  A Polettini,et al.  Properties of Portland cement--stabilised MSWI fly ashes. , 2001, Journal of hazardous materials.

[14]  Rob N.J. Comans,et al.  Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash , 1997 .

[15]  Thomas Højlund Christensen,et al.  Stabilization of APC-residues with FeSO4 , 1999 .

[16]  C. Zevenbergen,et al.  Mechanism and Conditions of Clay Formation During Natural Weathering of MSWI Bottom Ash , 1996 .

[17]  Reinhard Niessner,et al.  Morphological and Chemical Characterization of Calcium-Hydrate Phases Formed in Alteration Processes of Deposited Municipal Solid Waste Incinerator Bottom Ash , 2000 .

[18]  Peter Baccini,et al.  Chemical behaviour of municipal solid waste incinerator bottom ash in monofills , 1992 .

[19]  Rene Derie,et al.  A new way to stabilize fly ash from municipal incinerators , 1996 .

[20]  Shin-ichi Sakai,et al.  Full-scale plant study on fly ash treatment by the acid extraction process , 1996 .

[21]  F.J.M. Lamers,et al.  Upgrading Techniques for the Quality Improvement of Municipal Waste Incineration Residues , 1994 .

[22]  P. Baccini,et al.  Acid neutralizing capacity of municipal waste incinerator bottom ash. , 1995, Environmental science & technology.

[23]  Jesse R. Conner,et al.  Chemical fixation and solidification of hazardous wastes , 1990 .

[24]  Ghazaly Bin Shaaban,et al.  Stabilization and solidification of hazardous wastes , 1993 .

[25]  Andrea Ulrich,et al.  Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland , 1999 .

[26]  S. Tokunaga,et al.  Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. , 2000, Journal of hazardous materials.

[27]  Shin-ichi Sakai,et al.  Investigation of hydrogen generation from municipal solid waste incineration fly ash , 2000 .

[28]  William Hogland,et al.  Leachate Modelling in Full-Scale Cells Containing Predominantly MSW Incineration Residues , 2000 .

[29]  Jette Bjerre Hansen,et al.  Long-term development in APC ash landfills with respect to pH , 2001 .

[30]  A Polettini,et al.  Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. , 1999, Journal of hazardous materials.

[31]  J. Vehlow,et al.  Improving the MSWI Bottom Ash Quality by Simple in–Plant Measures , 1994 .

[32]  Carlton C. Wiles,et al.  Municipal Solid Waste Combustion Ash: State-of-the-Knowledge , 1996, Municipal Solid Wastes.

[33]  R. Niessner,et al.  Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management. , 2001, Journal of hazardous materials.

[34]  Ange Nzihou,et al.  Calcium phosphate stabilization of fly ash with chloride extraction. , 2002, Waste management.

[35]  B. Laethem,et al.  Integrated Treatment of MSWI-Residues Treatment of Fly Ash in View of Metal Recovery , 1994 .

[36]  C. Musselman,et al.  Gas generation at a municipal waste combustor ash monofill - Franklin, New Hampshire , 1997 .

[37]  David S. Kosson,et al.  Integration of Testing Protocols for Evaluation of Contaminant Release From Monolithic and Granular Wastes , 1997 .

[38]  Ole Hjelmar,et al.  Disposal strategies for municipal solid waste incineration residues , 1996 .