Switchable Magnetic Metamaterials Using Micromachining Processes

switchable metamaterials that possess very different states are almost a necessity. [ 11 ] Most of the tunable metamaterials that have been demonstrated rely on tuning constituent materials or changing surrounding media by introducing natural materials with higher tunability, such as liquid crystals and phase changing materials. [ 12–19 ] However, this limits the choices of materials and becomes increasingly diffi cult to implement at higher frequencies. Moreover, the tuning range is usually too limited to achieve a switching effect between strikingly different states. A complementary approach is to mechanically reconfi gure the metamaterial molecules. [ 20 , 21 ] Micromachining technology has been developed for fabrication and actuation of micromechanical devices [ 22–26 ] with switching frequencies up to the GHz level. [ 27 ]

[1]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[2]  M. F. Chang,et al.  A Surface Micromachined Miniature Switch For Telecommunications Applications With Signal Frequencies From DC Up To 4 Ghz , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[3]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[4]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[5]  Peidong Yang,et al.  Nanowire ultraviolet photodetectors and optical switches , 2002 .

[6]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[7]  J. Pendry,et al.  Perfect cylindrical lenses. , 2003, Optics express.

[8]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[9]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[10]  M. Stockman,et al.  Imperfect perfect lens. , 2005, Nano letters.

[11]  Ai Qun Liu,et al.  Tolerance analysis for comb-drive actuator using DRIE fabrication , 2006 .

[12]  Anja K. Skrivervik,et al.  Circuit model and design of silicon-integrated CRLH-TLS analogically controlled by MEMS , 2006 .

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  M. Notomi,et al.  Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.

[15]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[16]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[17]  Willie J. Padilla,et al.  Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements , 2007 .

[18]  S. Cummer,et al.  Characterization of Tunable Metamaterial Elements Using MEMS Switches , 2007, IEEE Antennas and Wireless Propagation Letters.

[19]  V. Shalaev Optical negative-index metamaterials , 2007 .

[20]  H. Cai,et al.  A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity. , 2008, Optics express.

[21]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[22]  Zhang,et al.  Asymmetric Tuning Schemes of MEMS Dual-Shutter VOA , 2008, Journal of Lightwave Technology.

[23]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[24]  T. Akin,et al.  Low-Loss Ku-Band Artificial Transmission Line With MEMS Tuning Capability , 2009, IEEE Microwave and Wireless Components Letters.

[25]  T. Akın,et al.  A tunable multi-band metamaterial design using micro-split SRR structures. , 2009, Optics express.

[26]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[27]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[28]  Vladimir M. Shalaev,et al.  Tunable magnetic response of metamaterials , 2009 .

[29]  Yuri Kivshar,et al.  Structural tunability in metamaterials , 2009, 0907.2303.

[30]  Xiaopeng Zhao,et al.  Magnetically tunable left handed metamaterials by liquid crystal orientation. , 2009, Optics express.

[31]  Thomas Maier,et al.  Wavelength-tunable microbolometers with metamaterial absorbers. , 2009, Optics letters.

[32]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[33]  Hajime Tanaka,et al.  Surface-wetting effects on the liquid–liquid transition of a single-component molecular liquid , 2010, Nature communications.

[34]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[35]  Yanxia Cui,et al.  Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. , 2010, Nano letters.