Porous media equations with multiplicative space–time white noise

The existence of martingale solutions for stochastic porous media equations driven by nonlinear multiplicative space-time white noise is established in spatial dimension one. The Stroock-Varopoulos inequality is identified as a key tool in the derivation of the corresponding estimates.

[1]  B. Gess,et al.  Entropy solutions for stochastic porous media equations , 2018, Journal of Differential Equations.

[2]  A. Figalli,et al.  Infinite Speed of Propagation and Regularity of Solutions to the Fractional Porous Medium Equation in General Domains , 2015, 1510.03758.

[3]  Martin Hairer,et al.  A Solution Theory for Quasilinear Singular SPDEs , 2017, Communications on Pure and Applied Mathematics.

[4]  Benjamin Gess,et al.  Random Attractors for Degenerate Stochastic Partial Differential Equations , 2012, 1206.2329.

[5]  M'at'e Gerencs'er Nondivergence form quasilinear heat equations driven by space-time white noise , 2019, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[6]  C. Mueller,et al.  Nonuniqueness for a parabolic SPDE with 3/4 - E Hölder diffusion coefficients , 2014 .

[7]  F. Quirós,et al.  A P ] 1 4 Ja n 20 10 A fractional porous medium equation by , 2010 .

[8]  F. Otto,et al.  Quasilinear SPDEs via Rough Paths , 2016, Archive for Rational Mechanics and Analysis.

[9]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[10]  Sylvie Méléard,et al.  Interacting measure branching processes. Some bounds for the support , 1993 .

[11]  Nicolas Perkowski,et al.  PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES , 2012, Forum of Mathematics, Pi.

[12]  Panagiotis E. Souganidis,et al.  Stochastic non-isotropic degenerate parabolic–hyperbolic equations , 2016, 1611.01303.

[13]  Arnaud Debussche,et al.  Degenerate parabolic stochastic partial differential equations: Quasilinear case , 2013, 1309.5817.

[14]  Benjamin Gess,et al.  Ergodicity for Stochastic Porous Media Equations , 2019 .

[15]  Benjamin J. Fehrman,et al.  Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise , 2018, Journal de Mathématiques Pures et Appliquées.

[16]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Benjamin Gess,et al.  Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE , 2016, The Annals of Probability.

[18]  I. Bailleul,et al.  Paracontrolled calculus for quasilinear singular PDEs , 2019, Stochastics and Partial Differential Equations: Analysis and Computations.

[19]  Guy Vallet,et al.  A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .

[20]  A. Pablo,et al.  On some critical problems for the fractional Laplacian operator , 2011, 1106.6081.

[21]  Michael Röckner,et al.  Martingale solutions and Markov selections for stochastic partial differential equations , 2009 .

[22]  Juan Luis Vázquez,et al.  A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains , 2013, 1311.6997.

[23]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[24]  Viorel Barbu,et al.  Stochastic Porous Media Equations , 2016 .

[25]  M. Hofmanová Degenerate parabolic stochastic partial differential equations , 2013 .