A Hamiltonian Regularization of the Burgers Equation
暂无分享,去创建一个
[1] Darryl D. Holm,et al. Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models , 2004 .
[2] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[3] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[4] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[5] Jonathan Goodman,et al. On dispersive difference schemes. I , 1988 .
[6] Darryl D. Holm,et al. Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..
[7] Jing Ping Wang,et al. Prolongation algebras and Hamiltonian operators for peakon equations , 2003 .
[8] J. M. Ball,et al. SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .
[9] Peter D. Lax,et al. On dispersive difference schemes , 1986 .
[10] Hailiang Liu,et al. Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..
[11] Walter A. Strauss,et al. Nonlinear Wave Equations , 1990 .
[12] Jerrold E. Marsden,et al. Shock Regularization for the Burgers Equation , 2006 .
[13] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[14] Darryl D. Holm,et al. Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .
[15] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[16] Darryl D. Holm,et al. On asymptotically equivalent shallow water wave equations , 2003, nlin/0307011.
[17] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[18] Corrado Lattanzio,et al. Global well-posedness and relaxation limits of a model for radiating gas , 2003 .
[19] Fritz John,et al. Nonlinear wave equations, formation of singularities , 1990 .
[20] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[21] Darryl D. Holm,et al. A Class of Equations with Peakon and Pulson Solutions (with an Appendix by Harry Braden and John Byatt-Smith) , 2004, nlin/0412029.
[22] H. Holden,et al. Front Tracking for Hyperbolic Conservation Laws , 2002 .
[23] E. Tadmor. Burgers' Equation with Vanishing Hyper-Viscosity , 2004 .
[24] E. Tadmor,et al. The regularized Chapman-Enskog expansion for scalar conservation laws , 1992 .
[25] Vladimir S. Novikov,et al. Perturbative symmetry approach , 2002, nlin/0203055.