A Hamiltonian Regularization of the Burgers Equation

We consider a quasilinear equation that consists of the inviscid Burgers equation plus O(α2) nonlinear terms. As we show, these extra terms regularize the Burgers equation in the following sense: for smooth initial data, the α > 0 equation has classical solutions globally in time. Furthermore, in the zero-α limit, solutions of the regularized equation converge strongly to weak solutions of the Burgers equation. We present numerical evidence that the zero-α limit satisfies the Oleinik entropy inequality. For all α ≥ 0, the regularized equation possesses a nonlocal Poisson structure. We prove the Jacobi identity for this generalized Hamiltonian structure.

[1]  Darryl D. Holm,et al.  Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models , 2004 .

[2]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[3]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[4]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[5]  Jonathan Goodman,et al.  On dispersive difference schemes. I , 1988 .

[6]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[7]  Jing Ping Wang,et al.  Prolongation algebras and Hamiltonian operators for peakon equations , 2003 .

[8]  J. M. Ball,et al.  SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .

[9]  Peter D. Lax,et al.  On dispersive difference schemes , 1986 .

[10]  Hailiang Liu,et al.  Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..

[11]  Walter A. Strauss,et al.  Nonlinear Wave Equations , 1990 .

[12]  Jerrold E. Marsden,et al.  Shock Regularization for the Burgers Equation , 2006 .

[13]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[14]  Darryl D. Holm,et al.  Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .

[15]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[16]  Darryl D. Holm,et al.  On asymptotically equivalent shallow water wave equations , 2003, nlin/0307011.

[17]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[18]  Corrado Lattanzio,et al.  Global well-posedness and relaxation limits of a model for radiating gas , 2003 .

[19]  Fritz John,et al.  Nonlinear wave equations, formation of singularities , 1990 .

[20]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[21]  Darryl D. Holm,et al.  A Class of Equations with Peakon and Pulson Solutions (with an Appendix by Harry Braden and John Byatt-Smith) , 2004, nlin/0412029.

[22]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[23]  E. Tadmor Burgers' Equation with Vanishing Hyper-Viscosity , 2004 .

[24]  E. Tadmor,et al.  The regularized Chapman-Enskog expansion for scalar conservation laws , 1992 .

[25]  Vladimir S. Novikov,et al.  Perturbative symmetry approach , 2002, nlin/0203055.