Towards Revenue-Driven Multi-User Online Task Offloading in Edge Computing

Mobile Edge Computing (MEC) has become an attractive solution to enhance the computing and storage capacity of mobile devices by leveraging available resources on edge nodes. In MEC, the arrivals of tasks are highly dynamic and are hard to predict precisely. It is of great importance yet very challenging to assign the tasks to edge nodes with guaranteed system performance. In this article, we aim to optimize the revenue earned by each edge node by optimally offloading tasks to the edge nodes. We formulate the revenue-driven online task offloading (ROTO) problem, which is proved to be NP-hard. We first relax ROTO to a linear fractional programming problem, for which we propose the Level Balanced Allocation (LBA) algorithm. We then show the performance guarantee of LBA through rigorous theoretical analysis, and present the LB-Rounding algorithm for ROTO using the primal-dual technique. The algorithm achieves an approximation ratio of <inline-formula><tex-math notation="LaTeX">$2(1+\xi)\ln (d+1)$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>ξ</mml:mi><mml:mo>)</mml:mo><mml:mo form="prefix">ln</mml:mo><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-3105325.gif"/></alternatives></inline-formula> with a considerable probability, where <inline-formula><tex-math notation="LaTeX">$d$</tex-math><alternatives><mml:math><mml:mi>d</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq2-3105325.gif"/></alternatives></inline-formula> is the maximum number of process slots of an edge node and <inline-formula><tex-math notation="LaTeX">$\xi$</tex-math><alternatives><mml:math><mml:mi>ξ</mml:mi></mml:math><inline-graphic xlink:href="zhang-ieq3-3105325.gif"/></alternatives></inline-formula> is a small constant. The performance of the proposed algorithm is validated through both trace-driven simulations and testbed experiments. Results show that our proposed scheme is more efficient compared to baseline algorithms.

[1]  Keqin Li,et al.  Multi-User Multi-Task Computation Offloading in Green Mobile Edge Cloud Computing , 2019, IEEE Transactions on Services Computing.

[2]  Xiangjie Kong,et al.  A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things , 2019, IEEE Internet of Things Journal.

[3]  Xu Chen,et al.  Adaptive User-managed Service Placement for Mobile Edge Computing: An Online Learning Approach , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[4]  Hongli Xu,et al.  Offloading Dependent Tasks in Mobile Edge Computing with Service Caching , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[5]  Yingshu Li,et al.  Computation Scheduling for Wireless Powered Mobile Edge Computing Networks , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[6]  Jun Zhang,et al.  Stochastic Joint Radio and Computational Resource Management for Multi-User Mobile-Edge Computing Systems , 2017, IEEE Transactions on Wireless Communications.

[7]  Ben Liang,et al.  Joint Offloading Decision and Resource Allocation with Uncertain Task Computing Requirement , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[8]  Jie Zhang,et al.  Efficient Computation Offloading for Multi-Access Edge Computing in 5G HetNets , 2018, 2018 IEEE International Conference on Communications (ICC).

[9]  Mengyu Liu,et al.  Price-Based Distributed Offloading for Mobile-Edge Computing With Computation Capacity Constraints , 2017, IEEE Wireless Communications Letters.

[10]  Weihua Zhuang,et al.  Learning-Based Computation Offloading for IoT Devices With Energy Harvesting , 2017, IEEE Transactions on Vehicular Technology.

[11]  Won-Joo Hwang,et al.  Online Computation Offloading in NOMA-Based Multi-Access Edge Computing: A Deep Reinforcement Learning Approach , 2020, IEEE Access.

[12]  Cheng-Xiang Wang,et al.  5G Ultra-Dense Cellular Networks , 2015, IEEE Wireless Communications.

[13]  Yang Liu,et al.  Profit-aware scheduling in task-level for datacenter networks , 2017, Comput. Electr. Eng..

[14]  Min Chen,et al.  Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network , 2018, IEEE Journal on Selected Areas in Communications.

[15]  S. Nickel,et al.  IBM ILOG CPLEX Optimization Studio , 2020 .

[16]  György Dán,et al.  A game theoretic analysis of selfish mobile computation offloading , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[17]  Yan Zhang,et al.  Online Learning and Optimization for Computation Offloading in D2D Edge Computing and Networks , 2019, Mobile Networks and Applications.

[18]  Sladana Josilo,et al.  Wireless and Computing Resource Allocation for Selfish Computation Offloading in Edge Computing , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[19]  Xiang-Yang Li,et al.  Dependent Task Placement and Scheduling with Function Configuration in Edge Computing , 2019, 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS).

[20]  Ziyin Zhang,et al.  Development of a new cloudlet content caching algorithm based on web mining , 2018, 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC).

[21]  Bhaskar Krishnamachari,et al.  Hermes: Latency Optimal Task Assignment for Resource-constrained Mobile Computing , 2017, IEEE Transactions on Mobile Computing.

[22]  Zheng Chang,et al.  Adaptive Service Offloading for Revenue Maximization in Mobile Edge Computing With Delay-Constraint , 2019, IEEE Internet of Things Journal.

[23]  Shan Zhang,et al.  Cooperative Service Caching and Workload Scheduling in Mobile Edge Computing , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[24]  Mehdi Bennis,et al.  Intelligent Edge: Leveraging Deep Imitation Learning for Mobile Edge Computation Offloading , 2020, IEEE Wireless Communications.

[25]  Youlong Luo,et al.  Dynamic multi-user computation offloading for wireless powered mobile edge computing , 2019, J. Netw. Comput. Appl..

[26]  Jukka K. Nurminen,et al.  Energy Efficiency of Mobile Clients in Cloud Computing , 2010, HotCloud.

[27]  Xu Chen,et al.  Learning Driven Computation Offloading for Asymmetrically Informed Edge Computing , 2019, IEEE Transactions on Parallel and Distributed Systems.

[28]  Geyong Min,et al.  Computation Offloading in Multi-Access Edge Computing Using a Deep Sequential Model Based on Reinforcement Learning , 2019, IEEE Communications Magazine.

[29]  P. Wan,et al.  Near-Optimal and Truthful Online Auction for Computation Offloading in Green Edge-Computing Systems , 2020, IEEE Transactions on Mobile Computing.

[30]  Luxin Zhang,et al.  Multi-Server Multi-User Multi-Task Computation Offloading for Mobile Edge Computing Networks , 2019, Sensors.

[31]  Kezhi Wang,et al.  Joint Energy Minimization and Resource Allocation in C-RAN with Mobile Cloud , 2015, IEEE Transactions on Cloud Computing.

[32]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[33]  Ying Chen,et al.  Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing , 2020, Peer-to-Peer Networking and Applications.

[34]  Honggang Zhang,et al.  A Game-theoretic Framework for Revenue Sharing in Edge-Cloud Computing System , 2017, 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC).

[35]  Zhi Zhou,et al.  Resource Price-Aware Offloading for Edge-Cloud Collaboration: A Two-Timescale Online Control Approach , 2022, IEEE Transactions on Cloud Computing.

[36]  Weifa Liang,et al.  Optimal Cloudlet Placement and User to Cloudlet Allocation in Wireless Metropolitan Area Networks , 2017, IEEE Transactions on Cloud Computing.

[37]  Wei Tan,et al.  Temporal Task Scheduling With Constrained Service Delay for Profit Maximization in Hybrid Clouds , 2017, IEEE Transactions on Automation Science and Engineering.

[38]  Mehdi Bennis,et al.  Optimized Computation Offloading Performance in Virtual Edge Computing Systems Via Deep Reinforcement Learning , 2018, IEEE Internet of Things Journal.