DETECTIONS OF WATER ICE, HYDROCARBONS, AND 3.3 μm PAH IN z ∼ 2 ULIRGs
暂无分享,去创建一个
M. Elitzur | Lin Yan | A. Sajina | H. Spoon | M. Imanishi | D. Fadda
[1] D. Whittet,et al. Dust in the Galactic Environment , 2018 .
[2] G. Helou,et al. THE ∼0.9 mJy SAMPLE: A MID-INFRARED SPECTROSCOPIC CATALOG OF 150 INFRARED–LUMINOUS, 24 μm SELECTED GALAXIES AT 0.3 ⩽ z ⩽ 3.5 , 2009, 0906.5271.
[3] Durham,et al. DETECTION OF FAR-INFRARED AND POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM THE COSMIC EYE: PROBING THE DUST AND STAR FORMATION OF LYMAN BREAK GALAXIES , 2009, 0904.1742.
[4] F. Walter,et al. A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.
[5] P. Roche,et al. The spatial variation of the 3-μm dust features in Circinus , 2009, 0901.2829.
[6] M. Imanishi. Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 LUMINOUS BURIED AGNS AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY , 2022 .
[7] G. Helou,et al. The Spitzer View of the Extragalactic Universe , 2008 .
[8] Takashi Onaka,et al. Systematic Infrared 2.5—5μm Spectroscopy of Nearby Ultraluminous Infrared Galaxies with AKARI , 2008, 0808.0363.
[9] University College London,et al. Testing the evolutionary link between submillimetre galaxies and quasars: CO observations of QSOs at z∼ 2 , 2008, 0806.0618.
[10] Ž. Ivezić,et al. AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.
[11] L. Armus,et al. Silicates in Ultraluminous Infrared Galaxies , 2008, 0801.4776.
[12] C. Papovich,et al. Mid-Infrared Spectroscopy of Lensed Galaxies at 1 < z < 3: The Nature of Sources Near the MIPS Confusion Limit , 2007, 0711.1902.
[13] S. Rawlings,et al. Mid-Infrared Spectroscopy of High-Redshift Obscured Quasars , 2007, 0711.0266.
[14] R. Maiolino,et al. 3-5 μm Spectroscopy of Obscured AGNs in ULIRGs , 2007, 0709.1344.
[15] H. E. Smith,et al. Obscuration in Extremely Luminous Quasars , 2007, 0709.4458.
[16] P. Hopkins,et al. A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.
[17] 菅沼 正洋,et al. 日本天文学会 早川幸男基金による渡航報告書 : The Central Engine of Active Galactic Nuclei , 2007 .
[18] Takao Nakagawa,et al. A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust , 2007, astro-ph/0702136.
[19] J. R. Houck,et al. The Distribution of Silicate Strength in Spitzer Spectra of AGNs and ULIRGs , 2006, astro-ph/0612509.
[20] J. Surace,et al. Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z ~ 2. I. The Spectra , 2006, astro-ph/0612297.
[21] L. Armus,et al. Mid-Infrared Galaxy Classification Based on Silicate Obscuration and PAH Equivalent Width , 2006, astro-ph/0611918.
[22] C. Grillmair,et al. Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample , 2006, astro-ph/0610218.
[23] M. Goto,et al. The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High-Velocity CO , 2006, astro-ph/0603041.
[24] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[25] R. Maiolino,et al. Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy , 2005, astro-ph/0510282.
[26] Nrl,et al. Infrared 3-4 μm Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies , 2005, astro-ph/0509861.
[27] W. Duley,et al. Laboratory and Theoretical Simulation of 3.4 μm Spectra of Hydrocarbons in Interstellar Sources , 2005 .
[28] Peter Hall,et al. Detection of the Buried Active Galactic Nucleus in NGC 6240 with the Infrared Spectrograph on the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.
[29] R. Genzel,et al. Gas near active galactic nuclei: A search for the 4.7micron CO band , 2004, astro-ph/0409123.
[30] M. Burgdorf,et al. Fire and Ice: Spitzer Infrared Spectrograph (IRS) Mid-Infrared Spectroscopy of IRAS F00183–7111 , 2004 .
[31] I. Hook,et al. The Parkes quarter-Jansky flat-spectrum sample - III. Space density and evolution of QSOs , 2004, astro-ph/0408122.
[32] E. Wright,et al. The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.
[33] A. Tielens,et al. Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .
[34] A. Tielens,et al. Detection of strongly processed ice in the central starburst of NGC 4945 , 2003, astro-ph/0302568.
[35] D. Caldwell,et al. Hydrocarbons, Ices, and “XCN” in the Line of Sight toward the Galactic Center , 2002 .
[36] A. Tielens,et al. Ice features in the mid-IR spectra of galactic nuclei , 2002, astro-ph/0202163.
[37] G. Canalizo,et al. Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Mergers , 2001, astro-ph/0103332.
[38] W. Duley,et al. Detection of New Infrared Spectral Features in Hydrogenated Amorphous Carbon , 2000 .
[39] M. Imanishi. The 3.4-μm absorption feature towards three obscured active galactic nuclei , 2000, astro-ph/0008093.
[40] S. Tremaine,et al. The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.
[41] J. Mayo Greenberg,et al. Approaching the Interstellar Grain Organic Refractory Component , 1995 .
[42] Alexander G. G. M. Tielens,et al. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains , 1994 .
[43] Y. Taniguchi,et al. A relation between H2 v=1−0 S(1) and 3.28 micron emission in Seyfert and starburst galaxies , 1990 .
[44] S. Serjeant,et al. Mid-infrared spectroscopy of infrared-luminous galaxies at z∼ 0.5–3 , 2009, 0902.3369.
[45] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .