The science is in the data

Understanding published research results should be through one’s own eyes and include the raw diffraction data, an option that has recently become viable at various data archives. Preserving and sharing raw diffraction data will allow challenging data cases in crystallography to be more expeditiously tackled.

[1]  K. Diederichs,et al.  Carboplatin binding to histidine , 2014, Acta crystallographica. Section F, Structural biology communications.

[2]  Thermal motion in protein crystals estimated using laser‐generated ultrasound and Young's modulus measurements , 1990 .

[3]  Robert Fletterick,et al.  The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity , 1997, Nature Structural Biology.

[4]  E. Arnold,et al.  Multifaceted Roles of Crystallography in Modern Drug Discovery , 2015, NATO Science for Peace and Security Series A: Chemistry and Biology.

[5]  David Groenewegen,et al.  Operation of the Australian Store.Synchrotron for macromolecular crystallography , 2014, Acta crystallographica. Section D, Biological crystallography.

[6]  Empirical correction for resolution- and temperature-dependent errors caused by factors such as thermal diffuse scattering , 2015 .

[7]  Thomas C. Terwilliger,et al.  Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data , 2014, Acta crystallographica. Section D, Biological crystallography.

[8]  Oleg V. Tsodikov,et al.  Data publication with the structural biology data grid supports live analysis , 2016, Nature Communications.

[9]  John R. Helliwell,et al.  Experiences with archived raw diffraction images data: capturing cisplatin after chemical conversion of carboplatin in high salt conditions for a protein crystal , 2013, Journal of synchrotron radiation.

[10]  C. Lorson,et al.  The SMN structure reveals its crucial role in snRNP assembly. , 2015, Human molecular genetics.

[11]  P. Fewster A new theory for X-ray diffraction , 2014, Acta crystallographica. Section A, Foundations and advances.

[12]  J. Kaduk,et al.  The crystal structure of trandolapril, C24H34N2O5: an example of the utility of raw data deposition in the powder diffraction file , 2016, Powder Diffraction.

[13]  T. Hahn International tables for crystallography , 2002 .

[14]  John R. Helliwell,et al.  Experiences with making diffraction image data available: what metadata do we need to archive? , 2014, Acta crystallographica. Section D, Biological crystallography.

[15]  J. Tanner,et al.  Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1 , 2017, The Journal of Biological Chemistry.

[16]  Naohiro Kobayashi,et al.  OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. , 2017, Structure.

[17]  A. Brash,et al.  Insights from the X-ray Crystal Structure of Coral 8R-Lipoxygenase , 2005, Journal of Biological Chemistry.

[18]  Zihe Rao,et al.  Crystal structure of human pyrroline-5-carboxylate reductase. , 2006, Journal of molecular biology.

[19]  John R. Helliwell,et al.  Experience with exchange and archiving of raw data: comparison of data from two diffractometers and four software packages on a series of lysozyme crystals , 2012, Journal of applied crystallography.

[20]  Thomas C Terwilliger,et al.  Archiving raw crystallographic data. , 2014, Acta crystallographica. Section D, Biological crystallography.

[21]  Deriving the ultrastructure of α-crustacyanin using lower-resolution structural and biophysical methods , 2010, Journal of synchrotron radiation.

[22]  T. Welberry,et al.  One hundred years of diffuse scattering , 2016 .

[23]  R. E. Marsh,et al.  Some 60 new space-group corrections. , 2002, Acta crystallographica. Section B, Structural science.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[26]  Wolfgang Kabsch,et al.  Evaluation of Single-Crystal X-ray Diffraction Data from a Position-Sensitive Detector , 1988 .

[27]  Hidde L. Ploegh,et al.  CEACAM1 regulates TIM-3-mediated tolerance and exhaustion , 2014, Nature.

[28]  W. Bragg,et al.  The Structure of Some Crystals as Indicated by Their Diffraction of X-rays , 1913 .

[29]  Revised structure of trans-resveratrol: Implications for its proposed antioxidant mechanism. , 2016, Bioorganic & medicinal chemistry letters.

[30]  G. Petsko,et al.  Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion , 2016, Nature.

[31]  John R Helliwell,et al.  Correcting the record of structural publications requires joint effort of the community and journal editors , 2016, The FEBS journal.

[32]  John R Helliwell,et al.  Raw diffraction data preservation and reuse: overview, update on practicalities and metadata requirements , 2017, IUCrJ.

[33]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[34]  Brian McMahon,et al.  How to make deposition of images a reality , 2014, Acta crystallographica. Section D, Biological crystallography.

[35]  N. Srinivasan,et al.  Seeing but not believing: the structure of glycerol dehydrogenase initially assumed to be the structure of a survival protein from Salmonella typhimurium. , 2017, Acta crystallographica. Section D, Structural biology.

[36]  P. Fewster What is an ‘ideally imperfect’ crystal? Is kinematical theory appropriate? , 2016, Acta Crystallographica Section A: Foundations and Advances.

[37]  Wladek Minor,et al.  A public database of macromolecular diffraction experiments. , 2016, Acta Crystallographica Section D: Structural Biology.

[38]  Organización Internacional de Normalización ISO 26324 : Information and documentation -- Digital object identifier system , 2012 .

[39]  Sangsoo Kim,et al.  Conformational flexibility in mammalian 15S‐lipoxygenase: Reinterpretation of the crystallographic data , 2008, Proteins.

[40]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[41]  F. Caruso,et al.  Structural basis for antioxidant activity of trans-resveratrol: ab initio calculations and crystal and molecular structure. , 2004, Journal of agricultural and food chemistry.

[42]  G. Bricogne,et al.  Achieving High Quality Ligand Chemistry in Protein-Ligand Crystal Structures for Drug Design , 2015 .

[43]  Bernhard Rupp,et al.  Visualizing ligand molecules in Twilight electron density. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[44]  Randy J. Read,et al.  A critical examination of the recently reported crystal structures of the human SMN protein , 2016, Human Molecular Genetics.

[45]  Zbigniew Dauter,et al.  Crystallography and chemistry should always go together: a cautionary tale of protein complexes with cisplatin and carboplatin. , 2015, Acta crystallographica. Section D, Biological crystallography.

[46]  Edwin Pozharski,et al.  Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. , 2013, Acta crystallographica. Section D, Biological crystallography.

[47]  Brian McMahon,et al.  Integrating research articles and supporting data in crystallography , 2008, Learn. Publ..

[48]  J. Helliwell,et al.  Re-refinement of 4g4a: room-temperature X-ray diffraction study of cisplatin and its binding to His15 of HEWL after 14 months chemical exposure in the presence of DMSO , 2016, Acta crystallographica. Section F, Structural biology communications.

[49]  John R Helliwell,et al.  Safeguarding Structural Data Repositories against Bad Apples. , 2016, Structure.