Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

This work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoring.

[1]  Jeffrey P. Walker,et al.  Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency , 2008 .

[2]  Jacqueline Boutin,et al.  ARGO upper salinity measurements: perspectives for L-band radiometers calibration and retrieved sea surface salinity validation , 2006, IEEE Geoscience and Remote Sensing Letters.

[3]  F. Torres,et al.  Impact and compensation of diffuse sun scattering in 2D aperture synthesis radiometers imagery , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[4]  Marco Talone Contributrion to the improvement of the soil moisture and ocean salinity (SMOS) sea surface salinity retrieval algorithm , 2010 .

[5]  Eric Anterrieu On the Reduction of the Reconstruction Bias in Synthetic Aperture Imaging Radiometry (Corrected)$^{\ast}$ , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Adriano Camps,et al.  On the Use of GNSS-R Data to Correct L-Band Brightness Temperatures for Sea-State Effects: Results of the ALBATROSS Field Experiments , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  M. Vall-llossera,et al.  Retrieving sea surface salinity with multiangular L‐band brightness temperatures: Improvement by spatiotemporal averaging , 2005 .

[8]  Adriano Camps,et al.  Characterization of the SMOS Instrumental Error Pattern Correction Over the Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[9]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Adriano Camps,et al.  Advanced architectures for real-time Delay-Doppler Map GNSS-reflectometers: The GPS reflectometer instrument for PAU (griPAU) , 2010 .

[11]  Manuel Martín-Neira,et al.  Polarimetric mode of MIRAS , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Manuel Martín-Neira,et al.  MIRAS end-to-end calibration: application to SMOS L1 processor , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[14]  Adriano Camps,et al.  Sun effects in 2-D aperture synthesis radiometry imaging and their cancelation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Manuel Martín-Neira,et al.  SMOS: The Payload , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Adriano Camps,et al.  Towards a coherent sea surface salinity product from SMOS radiometric measurements and ARGO buoys , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Adriano Camps,et al.  Radiometric sensitivity computation in aperture synthesis interferometric radiometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  Adriano Camps,et al.  Experimental Determination of the Sea Correlation Time Using GNSS-R Coherent Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[19]  Adriano Camps,et al.  Design and First Results of an UAV-Borne L-Band Radiometer for Multiple Monitoring Purposes , 2010, Remote. Sens..

[20]  Sidharth Misra,et al.  L-Band RFI as Experienced During Airborne Campaigns in Preparation for SMOS , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[22]  Marco Brogioni,et al.  DOMEX 2004: An Experimental Campaign at Dome-C Antarctica for the Calibration of Spaceborne Low-Frequency Microwave Radiometers , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Manuel Martin-Neira,et al.  First results on MIRAS calibration and overall SMOS performance , 2010, 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment.

[24]  Carolina Gabarró,et al.  SMOS Semi-Empirical Ocean Forward Model Adjustment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Yann Kerr,et al.  ESA's Soil Moisture and Ocean Salinity Mission: Mission Performance and Operations , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Y. Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle This satellite mission will use new algorithms to try to forecast weather and estimate climate change from satellite measurements of the Earth's surface. , 2010 .

[28]  M. Vall-llossera,et al.  Determination of the sea surface emissivity at L‐band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC‐ICM , 2008 .

[29]  Antonio Rius,et al.  A GPS-Reflections Receiver That Computes Doppler/Delay Maps in Real Time , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Jordi Font,et al.  A new buoy for measurement and real time transmission of surface salinity , 2010 .

[31]  José Barbosa,et al.  SMOS L1 processor prototype: From digital counts to brightness temperatures , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[32]  Martti Hallikainen,et al.  Helsinki University of Technology L-Band Airborne Synthetic Aperture Radiometer , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Camps Carmona,et al.  Aplication of Interferometric Radiometry to Earth Observation , 1996 .

[34]  Albert Aguasca,et al.  Seawater dielectric permittivity model from measurements at L band , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[35]  Manuel Martín-Neira,et al.  Minimization of Image Distortion in SMOS Brightness Temperature Maps Over the Ocean , 2012, IEEE Geoscience and Remote Sensing Letters.

[36]  Adriano Camps,et al.  Sea surface salinity retrievals from HUT-2D L-band radiometric measurements , 2010 .

[37]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[38]  Yann Kerr,et al.  Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part II: Application to SMOS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Eric Anterrieu,et al.  A resolving matrix approach for synthetic aperture imaging radiometers , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Adriano Camps,et al.  Land Geophysical Parameters Retrieval Using the Interference Pattern GNSS-R Technique , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Adriano Camps,et al.  Improved Image Reconstruction Algorithms for Aperture Synthesis Radiometers , 2008, IEEE Trans. Geosci. Remote. Sens..

[43]  Joaquim Ballabrera-Poy,et al.  Surface salinity response to changes in the model parameters and forcings in a climatological simulation of the eastern North-Atlantic Ocean , 2008 .

[44]  Gary S. E. Lagerloef,et al.  Sea Surface Salinity: The Next Remote Sensing Challenge , 1995 .

[45]  Hyuk Park,et al.  Optimum Intercalibration Time in Synthetic Aperture Interferometric Radiometers: Application to SMOS , 2012, IEEE Geoscience and Remote Sensing Letters.

[46]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[47]  Jacqueline Boutin,et al.  Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties , 2004 .

[48]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[49]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[50]  Yann Kerr,et al.  SMOS Validation and the COSMOS Campaigns , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Eric Anterrieu On the Reduction of the Reconstruction Bias in Synthetic Aperture Imaging Radiometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Paul Spurgeon,et al.  SMOS ocean salinity performance and TB bias correction , 2009 .

[53]  Jacqueline Boutin,et al.  SMOS first data analysis for sea surface salinity determination , 2013 .

[54]  Manuel Martín-Neira,et al.  On-Ground Characterization of the SMOS Payload , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[55]  D. Vine,et al.  RFI at L-band in synthetic aperture radiometers , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[56]  Luis Enrique,et al.  The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Bertrand Chapron,et al.  Overview of the First SMOS Sea Surface Salinity Products. Part I: Quality Assessment for the Second Half of 2010 , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[59]  T. Carlson An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery , 2007, Sensors (Basel, Switzerland).

[60]  Adriano Camps,et al.  GNSS-R Delay-Doppler Maps over land: Preliminary results of the GRAJO field experiment , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[61]  Ignasi Corbella,et al.  SMOS Calibration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Adriano Camps,et al.  Fast Processing Tool for SMOS Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[63]  Adriano Camps,et al.  1 RFI Analysis in SMOS Imagery , 2010 .

[64]  Adriano Camps,et al.  Microwave aperture synthesis radiometry: Paving the path for sea surface salinity measurement from space , 2008 .

[65]  Hyuk Park,et al.  Improving the accuracy of sea surface salinity retrieval using GNSS‐R data to correct the sea state effect , 2011 .

[66]  Jacqueline Boutin,et al.  Overview of the SMOS Sea Surface Salinity Prototype Processor , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Adriano Camps,et al.  Brightness-Temperature Retrieval Methods in Synthetic Aperture Radiometers , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Adriano Camps,et al.  The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-D large aperture synthesis interferometric radiometers , 1997, IEEE Trans. Geosci. Remote. Sens..

[69]  Adriano Camps,et al.  SMOS' brightness temperatures validation: First results after the commisioning phase , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[70]  Joaquim Ballabrera-Poy,et al.  Salinity model errors induced by wind stress uncertainties in the Macaronesian region , 2009 .

[71]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[72]  Manuel Martin-Neira,et al.  Radiometric Performance of the SMOS Reference Radiometers—Assessment After One Year of Operation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[73]  Rita Castro,et al.  Rfianalysis in smos imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[74]  C. Prigent,et al.  New permittivity measurements of seawater , 1998 .

[75]  Adriano Camps,et al.  The determination of surface salinity with the European SMOS space mission , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Paul Spurgeon,et al.  Ocean salinity retrieval approaches for the SMOS satellite , 2010 .

[77]  María Piles,et al.  Multiscale soil moisture retrievals from microwave remote sensing observations , 2010 .

[78]  Bertrand Chapron,et al.  Modeling Sun Glitter at L-Band for Sea Surface Salinity Remote Sensing With SMOS , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[79]  Rita Castro,et al.  Radio-Frequency Interference Detection and Mitigation Algorithms for Synthetic Aperture Radiometers , 2011, Algorithms.