Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution

Abstract Accurate evaluation of the thermal conductivity of a material can be a challenging task from both experimental and theoretical points of view. In particular for the nanostructured materials, the experimental measurement of thermal conductivity is associated with diverse sources of uncertainty. As a viable alternative to experiment, the combination of density functional theory (DFT) simulations and the solution of Boltzmann transport equation is currently considered as the most trusted approach to examine thermal conductivity. The main bottleneck of the aforementioned method is to acquire the anharmonic interatomic force constants using the computationally demanding DFT calculations. In this work we propose a substantially accelerated approach for the evaluation of anharmonic interatomic force constants via employing machine-learning interatomic potentials (MLIPs) trained over short ab initio molecular dynamics trajectories. The remarkable accuracy of the proposed accelerated method is confirmed by comparing the estimated thermal conductivities of several bulk and two-dimensional materials with those computed by the full-DFT approach. The MLIP-based method proposed in this study can be employed as a standard tool, which would substantially accelerate and facilitate the estimation of lattice thermal conductivity in comparison with the commonly used full-DFT solution.

[1]  Rongjun Zhang,et al.  Phonon transport properties of two-dimensional group-IV materials from ab initio calculations , 2016 .

[2]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[3]  T. R. Anthony,et al.  Thermal conductivity of diamond between 170 and 1200 K and the isotope effect , 1993 .

[4]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[5]  H. J. Liu,et al.  Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study , 2017, Scientific Reports.

[6]  Natalio Mingo,et al.  Flexural phonons and thermal transport in multilayer graphene and graphite , 2011 .

[7]  Song Gao,et al.  Comparative study of thermal properties of group-VA monolayers with buckled and puckered honeycomb structures , 2016 .

[8]  Alexander V. Shapeev,et al.  Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials , 2015, Multiscale Model. Simul..

[9]  T. Rabczuk,et al.  Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials , 2020, 2005.04913.

[10]  First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene , 2014, 1404.2874.

[11]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[12]  Yinchang Zhao,et al.  Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS2 , 2018 .

[13]  Liang Chen,et al.  Understanding the thermal conductivity of Diamond/Copper composites by first-principles calculations , 2019, Carbon.

[14]  Alexander A. Balandin,et al.  Graphene Thermal Properties: Applications in Thermal Management and Energy Storage , 2014 .

[15]  A. Balandin,et al.  Phonons and thermal transport in graphene and graphene-based materials , 2016, Reports on progress in physics. Physical Society.

[16]  William F. Banholzer,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993 .

[17]  Liyan Zhu,et al.  Suppressed thermal conductivity in fluorinated diamane: Optical phonon dominant thermal transport , 2019, Applied Physics Letters.

[18]  G. Le Guillou,et al.  Phonon Conductivity of InAs , 1972 .

[19]  Yinchang Zhao,et al.  Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) , 2019, Scientific Reports.

[20]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[21]  P. R. W. Hudson,et al.  Nitrogen in diamond: evidence from thermal conductivity , 1975 .

[22]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[23]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[24]  Jun Jiang,et al.  High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. , 2015, Physical Chemistry, Chemical Physics - PCCP.

[25]  Alexander V. Shapeev,et al.  Active learning of linearly parametrized interatomic potentials , 2016, 1611.09346.

[26]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[27]  Gang Zhang,et al.  Coexistence of size-dependent and size-independent thermal conductivities in phosphorene , 2014, 1409.1967.

[28]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[29]  Layer thickness-dependent phonon properties and thermal conductivity of MoS2 , 2016, 1601.00227.

[30]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[31]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[32]  R. Ruoff,et al.  Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond , 2019, Nature Nanotechnology.

[33]  Zeyu Liu,et al.  The impact of hydrogenation on the thermal transport of silicene , 2017 .

[34]  G. Qin,et al.  On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals , 2018, Computational Materials Science.

[35]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[36]  Pinshane Y. Huang,et al.  High thermal conductivity in cubic boron arsenide crystals , 2018, Science.

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Yang Han,et al.  Phonon transport in the ground state of two-dimensional silicon and germanium , 2016 .

[39]  A. Balandin Phononics of Graphene and Related Materials. , 2020, ACS nano.

[40]  T. Chu,et al.  Crystal Growth and Properties of Boron Monoarsenide , 1972 .

[41]  Junyong Kang,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature Materials.

[42]  A. N. Gandi,et al.  Thermal conductivity of bulk and monolayer MoS2 , 2016 .

[43]  Alexander A. Balandin,et al.  Thermal Properties of Isotopically Engineered Graphene , 2011, 1112.5752.

[44]  Z. Xiong,et al.  Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. , 2017, Nanoscale.

[45]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[46]  Y. Kawazoe,et al.  Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene , 2017 .

[47]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[48]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[49]  Zeyu Ning,et al.  Beyond Perturbation: Role of Vacancy-Induced Localized Phonon States in Thermal Transport of Monolayer MoS2 , 2016 .

[50]  Rampi Ramprasad,et al.  Machine Learning Force Fields: Construction, Validation, and Outlook , 2016, 1610.02098.

[51]  R. Bowers,et al.  InAs and InSb as Thermoelectric Materials , 1959 .

[52]  Xiulin Ruan,et al.  Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons , 2018 .

[53]  Natalio Mingo,et al.  Phonon thermal transport in strained and unstrained graphene from first principles , 2014 .

[54]  A. Balandin,et al.  Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials , 2012 .

[55]  S. Pei,et al.  Thermal Transport in Graphene Nanostructures: Experiments and Simulations , 2010 .

[56]  David-Wei Zhang,et al.  First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene. , 2016, ACS applied materials & interfaces.

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  Carl W. Magnuson,et al.  Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. , 2011, ACS nano.

[59]  Lichun Zhang,et al.  First-principles study of intrinsic phononic thermal transport in monolayer C 3 N , 2018 .

[60]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[61]  A. McGaughey,et al.  Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon , 2015 .

[62]  Nicola Marzari,et al.  Thermal conductivity of graphene and graphite: collective excitations and mean free paths. , 2014, Nano letters.

[63]  Guojian Li,et al.  Lone-Pair Electrons Do Not Necessarily Lead to Low Lattice Thermal Conductivity: An Exception of Two-Dimensional Penta-CN2. , 2018, The journal of physical chemistry letters.

[64]  Jun Liu,et al.  Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect , 2014 .

[65]  Klaus-Robert Müller,et al.  SchNet: A continuous-filter convolutional neural network for modeling quantum interactions , 2017, NIPS.

[66]  Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity. , 2016, Nano letters.

[67]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[68]  N. Mingo,et al.  Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide , 2016 .

[69]  J. Behler,et al.  A Performance and Cost Assessment of Machine Learning Interatomic Potentials. , 2019, The journal of physical chemistry. A.

[70]  C. Uher,et al.  A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .

[71]  C. Amon,et al.  First-principles phonon thermal transport in graphene: Effects of exchange-correlation and type of pseudopotential , 2018, Journal of Applied Physics.

[72]  V. Varshney,et al.  Bond saturation significantly enhances thermal energy transport in two-dimensional pentagonal materials , 2018 .

[73]  Xing Zhang,et al.  Width dependent intrinsic thermal conductivity of suspended monolayer graphene , 2017 .