High order VEM on curved domains
暂无分享,去创建一个
[1] Lorenzo Mascotto,et al. Exponential convergence of the hp Virtual Element Method with corner singularities , 2016, 1611.10165.
[2] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[3] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[4] Ivonne Sgura,et al. Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.
[5] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[6] P. F. Antonietti,et al. A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.
[7] L. Beirao da Veiga,et al. The Virtual Element Method with curved edges , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[8] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[9] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[10] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[11] Lourenco Beirao da Veiga,et al. Stability Analysis for the Virtual Element Method , 2016, 1607.05988.
[12] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[13] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[14] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[15] Vidar Thomée,et al. Polygonal Domain Approximation in Dirichlet's Problem , 1973 .
[16] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[17] Antonio Huerta,et al. Comparison of high‐order curved finite elements , 2011 .
[18] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[19] Stefano Berrone,et al. A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method , 2016 .
[20] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[21] Daniele A. Di Pietro,et al. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods , 2018, J. Comput. Phys..
[22] K. Lipnikov. On shape-regularity of polyhedral meshes for solving PDEs , 2013 .
[23] Vidar Thomée,et al. Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections , 1972 .
[24] Todd F. Dupont. L2 Error Estimates for Projection Methods for Parabolic Equations in Approximating Domains , 1974 .
[25] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[26] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..