Multivalued distance maps for motion planning on surfaces with moving obstacles
暂无分享,去创建一个
[1] H. Blum. Biological shape and visual science (part I) , 1973 .
[2] L. Schumaker,et al. Curves and surfaces in geometric design , 1994 .
[3] S. LaValle,et al. Motion Planning , 2008, Springer Handbook of Robotics.
[4] Alfred M. Bruckstein,et al. Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[5] J. Tsitsiklis. Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..
[6] Eric L. Schwartz,et al. Computing Minimal Distances on Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[7] J A Sethian,et al. A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[8] H. Blum. Biological shape and visual science. I. , 1973, Journal of theoretical biology.
[9] D. Taghirad. Ieee Transactions on Robotics and Automation 1 Robust Torque Control of Harmonic Drive Systems , 1997 .
[10] Alexander Zelinsky,et al. Using Path Transforms to Guide the Search for Findpath in 2D , 1994, Int. J. Robotics Res..
[11] Micha Sharir,et al. On shortest paths in polyhedral spaces , 1986, STOC '84.
[12] R. Kimmel,et al. Finding shortest paths on surfaces , 1994 .
[13] Takashi Tsubouchi,et al. Behavior of a mobile robot navigated by an "iterated forecast and planning" scheme in the presence of multiple moving obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[14] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[15] David W. Payton,et al. Planning and reasoning for autonomous vehicle control , 1987 .
[16] M. Gage,et al. The Curve Shortening Flow , 1987 .
[17] Micha Sharir,et al. Planning, geometry, and complexity of robot motion , 1986 .
[18] Joseph S. B. Mitchell,et al. The Discrete Geodesic Problem , 1987, SIAM J. Comput..
[19] J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .
[20] Steven W. Zucker,et al. Planning collision-free trajectories in time-varying environments: a two-level hierarchy , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.
[21] Kostas J. Kyriakopoulos,et al. Optimal and suboptimal motion planning for collision avoidance of mobile robots in non-stationary environments , 1994, J. Intell. Robotic Syst..
[22] Gábor Székely,et al. Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..
[23] J. Tsitsiklis,et al. Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[24] J. Sethian,et al. A Fast Level Set Method for Propagating Interfaces , 1995 .
[25] R. Kimmel,et al. Shortening three-dimensional curves via two-dimensional flows , 1995 .
[26] R. Leighton,et al. Feynman Lectures on Physics , 1971 .
[27] R. Feynman,et al. The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .
[28] D. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .
[29] Kostas J. Kyriakopoulos,et al. An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments , 1993, Autom..
[30] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[31] S. Zucker,et al. Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .