Multivalued distance maps for motion planning on surfaces with moving obstacles

This paper presents a new algorithm for planning the time-optimal motion of a robot travelling with limited velocity from a given location to a given destination on a surface in the presence of moving obstacles. Additional constraints such as space variant terrain traversability and fuel economy can be accommodated. A multivalued distance map is defined and applied in computing optimal trajectories. The multivalued distance map incorporates constraints imposed by the moving obstacles, surface topography, and terrain traversability. It is generated by an efficient numerical curve propagation technique.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  L. Schumaker,et al.  Curves and surfaces in geometric design , 1994 .

[3]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[4]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[6]  Eric L. Schwartz,et al.  Computing Minimal Distances on Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[9]  D. Taghirad Ieee Transactions on Robotics and Automation 1 Robust Torque Control of Harmonic Drive Systems , 1997 .

[10]  Alexander Zelinsky,et al.  Using Path Transforms to Guide the Search for Findpath in 2D , 1994, Int. J. Robotics Res..

[11]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[12]  R. Kimmel,et al.  Finding shortest paths on surfaces , 1994 .

[13]  Takashi Tsubouchi,et al.  Behavior of a mobile robot navigated by an "iterated forecast and planning" scheme in the presence of multiple moving obstacles , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[15]  David W. Payton,et al.  Planning and reasoning for autonomous vehicle control , 1987 .

[16]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[17]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[18]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[19]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[20]  Steven W. Zucker,et al.  Planning collision-free trajectories in time-varying environments: a two-level hierarchy , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[21]  Kostas J. Kyriakopoulos,et al.  Optimal and suboptimal motion planning for collision avoidance of mobile robots in non-stationary environments , 1994, J. Intell. Robotic Syst..

[22]  Gábor Székely,et al.  Estimating shortest paths and minimal distances on digitized three-dimensional surfaces , 1993, Pattern Recognit..

[23]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[24]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[25]  R. Kimmel,et al.  Shortening three-dimensional curves via two-dimensional flows , 1995 .

[26]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[27]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[28]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[29]  Kostas J. Kyriakopoulos,et al.  An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments , 1993, Autom..

[30]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[31]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .