Quantum mechanical/molecular mechanical self‐consistent Madelung potential method for treatment of polar molecular crystals

The self‐consistent Madelung potential (SCMP) approach for calculating molecular wave functions for a subunit embedded in a symmetrical environment constituted by the copies of the subunit is implemented with semiempirical NDDO model Hamiltonians and supplemented with empirically parameterized dispersion–repulsion interaction potentials. This model yields sublimation enthalpies in good agreement with available experimental data for a series of molecular crystals, including imidazol, benzimidazole, urea, urethane, dicyaneamide, formamide, uracil, cytosine, maleic anhydride, succinic anhydride, and 1,3,5‐triamino‐2,4,6‐trinitro‐benzene. The SCMP‐NDDO method, which avoids difficulties concerning the parametrization of charges in the molecular mechanics force fields, is proposed mainly for the treatment of molecular crystals with large unit cells. It might be particularly useful where important charge reorganization is expected under the effect of the crystal field. Charge distributions, obtained by the SCMP and the simple dielectric cavity self‐consistent reaction field models, are compared and analyzed. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 38–50, 1998

[1]  Christophe Chipot,et al.  A comprehensive approach to molecular charge density models: From distributed multipoles to fitted atomic charges , 1994 .

[2]  J. D. Bell,et al.  The crystal structure of imidazole by neutron diffraction at 20°C and –150°C , 1977 .

[3]  János G. Ángyán,et al.  Common theoretical framework for quantum chemical solvent effect theories , 1992 .

[4]  Daniel Rinaldi,et al.  Polarisabilites moléculaires et effet diélectrique de milieu à l'état liquide. Étude théorique de la molécule d'eau et de ses diméres , 1973 .

[5]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[6]  R. McClure,et al.  New investigations of cytosine and its monohydrate , 1973 .

[7]  Christophe Chipot,et al.  Modeling amino acid side chains. 2. Determination of point charges from electrostatic properties: toward transferable point charge models , 1993 .

[8]  Michiel Sprik,et al.  A density‐functional study of the intermolecular interactions of benzene , 1996 .

[9]  P. Popelier,et al.  An ab Initio Study of Crystal Field Effects: Solid-state and Gas-Phase Geometry of Acetamide , 1989 .

[10]  M. Catti,et al.  Electrostatic lattice energy in ionic crystals: optimization of the convergence of Ewald series , 1978 .

[11]  B. Silvi,et al.  Dipole moment of the water molecule in the condensed phase: a periodic Hartree-Fock estimate , 1995 .

[12]  David J. Willock,et al.  The relaxation of molecular crystal structures using a distributed multipole electrostatic model , 1995, J. Comput. Chem..

[13]  P. Schleyer,et al.  Large Effects of Medium on Geometries. An ab Initio Study , 1994 .

[14]  Michael B. Hursthouse,et al.  Experimental and theoretical study of the charge density in 2‐methyl‐4‐nitroaniline , 1992 .

[15]  Donald E. Williams,et al.  Conformational dependence of electrostatic potential‐derived charges: Studies of the fitting procedure , 1993, J. Comput. Chem..

[16]  L. Seijo,et al.  The ab initio model potential method. Main group elements , 1987 .

[17]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[18]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[19]  Roberto Dovesi,et al.  Ab initio approach to molecular crystals: A periodic Hartree–Fock study of crystalline urea , 1990 .

[20]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[21]  J. Almlöf,et al.  Hydrogen bond studies , 1973 .

[22]  Sarah L. Price,et al.  Electrostatic models for polypeptides: can we assume transferability? , 1992 .

[23]  A. C. Larson,et al.  The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene , 1965 .

[24]  J. Ángyán,et al.  Electrostatic interactions in three‐dimensional solids. Self‐consistent Madelung potential (SCMP) approach , 1987 .

[25]  György G. Ferenczy,et al.  NDDO fragment self‐consistent field approximation for large electronic systems , 1992 .

[26]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[27]  H. Scheraga,et al.  Modeling amino acid side chains. 3. Influence of intra- and intermolecular environment on point charges , 1993 .

[28]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[29]  C. Alsenoy,et al.  Ab initio studies of crystal field effects : part VIII. structure of formamide oxime using a 15-molecule cluster , 1994 .

[30]  Jiabo Li,et al.  Calculation of the electron distribution of the YBa2Cu3O7 cluster using a SCF Madelung potential , 1994 .

[31]  R. E. Marsh,et al.  The crystal structure of maleic anhydride , 1962 .

[32]  A. Gavezzotti,et al.  Geometry of the Intermolecular X-H.cntdot..cntdot..cntdot.Y (X, Y = N, O) Hydrogen Bond and the Calibration of Empirical Hydrogen-Bond Potentials , 1994 .

[33]  P. Keegstra,et al.  Cumulative atomic multipole moments for molecular crystals from ab‐initio crystal orbital wave functions and for molecules in excited states from ab‐initio MRD‐CI wave functions , 1990 .

[34]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[35]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[36]  Jean-Louis Rivail,et al.  A quantum chemical approach to dielectric solvent effects in molecular liquids , 1976 .

[37]  C. Alsenoy,et al.  Solids modelled by crystal field ab initio methods. 5. The phase transitions in biphenyl from a molecular point of view , 1994 .

[38]  L. Seijo,et al.  The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+ , 1988 .

[39]  Gábor I. Csonka,et al.  Analysis of the core‐repulsion functions used in AM1 and PM3 semiempirical calculations: Conformational analysis of ring systems , 1993, J. Comput. Chem..

[40]  PROPERTIES OF MOLECULAR-CRYSTALS BY MEANS OF THEORY , 1993 .

[41]  J. Zyss,et al.  Nonlinear optical properties of organic crystals with hydrogen‐bonded molecular units: The case of urea , 1982 .

[42]  A. Gavezzotti,et al.  Empirical intermolecular potentials for organic crystals: the `6‐exp' approximation revisited , 1993 .

[43]  M. Tsukada Self-Consistent Madelung Potential for the Cluster Calculation of Partially Ionic Solids —Application to ReO 3 — , 1980 .

[44]  K. Merz,et al.  Analysis of a large data base of electrostatic potential derived atomic charges , 1992 .

[45]  J. F. Liebman,et al.  Molecular structure and energetics , 1986 .

[46]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[47]  R. K. McMullan,et al.  The crystal structure and molecular thermal motion of urea at 12, 60 and 123 K from neutron diffraction , 1984 .

[48]  Manuel F. Ruiz-López,et al.  Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity , 1983 .

[49]  Terry R. Stouch,et al.  Conformational dependence of electrostatic potential derived charges of a lipid headgroup: Glycerylphosphorylcholine , 1992 .

[50]  P. Jiménez,et al.  Thermochemical properties of N-heterocyclic compounds I. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of pyrazole, imidazole, indazole, and benzimidazole , 1987 .

[51]  Jonathan W. Essex,et al.  Atomic charges for variable molecular conformations , 1992 .

[52]  L. Pueyo,et al.  The cluster–lattice interaction in the calculation of the electronic structure of CrF3−6 in K2NaCrF6 , 1983 .

[53]  I. Panas A SELF-CONSISTENT CRYSTAL-FIELD APPROACH TO THE STRUCTURES OF MOLECULAR-CRYSTALS APPLIED TO SOLID HCN , 1992 .

[54]  H. Hope,et al.  An X‐ray determination of the charge deformation density in 2‐cyanoguanidine , 1980 .

[55]  C. G. D. Kruif,et al.  Thermodynamic properties of molecular organic crystals containing nitrogen, oxygen, and sulphur 1. Vapour pressures and enthalpies of sublimation , 1983 .

[56]  Z. Berkovitch-yellin,et al.  Atom-atom potential analysis of the packing characteristics of carboxylic acids. A study based on experimental electron-density distributions , 1982 .

[57]  L. Pettersson,et al.  Ab initio model potential study of pressure effects on K2NaGaF6:Cr3+ , 1993 .

[58]  György G. Ferenczy,et al.  Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons , 1993 .

[59]  R. Small,et al.  The crystal structure of ethyl carbamate , 1967 .

[60]  U. Skoglund,et al.  On the Structure of the Peptide Linkage. The Structures of Formamide and Acetamide at -165 degrees C and an ab initio Study of Formamide, Acetamide, and N-Methylformamide. , 1975 .

[61]  S. Fliszar,et al.  Ab initio calculation of the heptamer (NH3)7 as a reasonable starting point for a description of the ammonia crystal , 1983 .

[62]  E. M. Evleth,et al.  Conformationally invariant modeling of atomic charges , 1993 .

[63]  A. Gavezzotti,et al.  Theoretical aspects and computer modeling of the molecular solid state , 1997 .

[64]  M. Ehrenberg The crystal structure of succinic anhydride , 1965 .

[65]  L. H. Jensen,et al.  Redetermination of the crystal structure of uracil , 1967 .

[66]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[67]  A. Kitaigorodsky,et al.  The Atom-Atom Potential Method , 1987 .

[68]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .