Similarity search and mining in uncertain spatial and spatio-temporal databases

Both the current trends in technology such as smart phones, general mobile devices, stationary sensors and satellites as well as a new user mentality of utilizing this technology to voluntarily share information produce a huge flood of geo-spatial and geo-spatio-temporal data. This data flood provides a tremendous potential of discovering new and possibly useful knowledge. In addition to the fact that measurements are imprecise, due to the physical limitation of the devices, some form of interpolation is needed in-between discrete time instances. From a complementary perspective - to reduce the communication and bandwidth utilization, along with the storage requirements, often the data is subjected to a reduction, thereby eliminating some of the known/recorded values. These issues introduce the notion of uncertainty in the context of spatio-temporal data management - an aspect raising an imminent need for scalable and flexible data management. The main scope of this thesis is to develop effective and efficient techniques for similarity search and data mining in uncertain spatial and spatio-temporal data. In a plethora of research fields and industrial applications, these techniques can substantially improve decision making, minimize risk and unearth valuable insights that would otherwise remain hidden. The challenge of effectiveness in uncertain data is to correctly determine the set of possible results, each associated with the correct probability of being a result, in order to give a user a confidence about the returned results. The contrary challenge of efficiency, is to compute these result and corresponding probabilities in an efficient manner, allowing for reasonable querying and mining times, even for large uncertain databases. The paradigm used to master both challenges, is to identify a small set of equivalent classes of possible worlds, such that members of the same class can be treated as equivalent in the context of a given query predicate or data mining task. In the scope of this work, this paradigm will be formally defined, and applied to the most prominent classes of spatial queries on uncertain data, including range queries, k-nearest neighbor queries, ranking queries and reverse k-nearest neighbor queries. For this purpose, new spatial and probabilistic pruning approaches are developed to further speed up query processing. Furthermore, the proposed paradigm allows to develop the first efficient solution for the problem of frequent co-location mining on uncertain data. Special emphasis is taken on the temporal aspect of applications using modern data collection technologies. While the aforementioned techniques work well for single points of time, the prediction of query results over time remains a challenge. This thesis fills this gap by modeling an uncertain spatio-temporal object as a stochastic process, and by applying the above paradigm to efficiently query, index and mine historical spatio-temporal data.

[1]  J. L. Hodges,et al.  The Poisson Approximation to the Poisson Binomial Distribution , 1960 .

[2]  Christos Faloutsos,et al.  Prediction and indexing of moving objects with unknown motion patterns , 2004, SIGMOD '04.

[3]  N. Zacharias,et al.  The Twin Astrographic Catalog on the Hipparcos System , 1999 .

[4]  Sharad Mehrotra,et al.  Progressive approximate aggregate queries with a multi-resolution tree structure , 2001, SIGMOD '01.

[5]  Hans-Peter Kriegel,et al.  Efficient Probabilistic Reverse Nearest Neighbor Query Processing on Uncertain Data , 2011, Proc. VLDB Endow..

[6]  Hans-Peter Kriegel,et al.  Probabilistic Nearest Neighbor Queries on Uncertain Moving Object Trajectories , 2013, Proc. VLDB Endow..

[7]  Jianwen Su,et al.  Universal trajectory queries for moving object databases , 2004, IEEE International Conference on Mobile Data Management, 2004. Proceedings. 2004.

[8]  Sunil Prabhakar,et al.  Evaluating probabilistic queries over imprecise data , 2003, SIGMOD '03.

[9]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[10]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[11]  Hans-Peter Kriegel,et al.  The X-tree : An Index Structure for High-Dimensional Data , 2001, VLDB.

[12]  Hans-Peter Kriegel,et al.  Scalable Probabilistic Similarity Ranking in Uncertain Databases , 2010, IEEE Transactions on Knowledge and Data Engineering.

[13]  Hanan Samet,et al.  Continuous K-Nearest Neighbor Queries for Continuously Moving Points with Updates , 2003, VLDB.

[14]  Flip Korn,et al.  Influence sets based on reverse nearest neighbor queries , 2000, SIGMOD 2000.

[15]  Peter Sanders,et al.  Highway Hierarchies Star , 2006, The Shortest Path Problem.

[16]  Lizhen Wang,et al.  Finding Probabilistic Prevalent Colocations in Spatially Uncertain Data Sets , 2013, IEEE Transactions on Knowledge and Data Engineering.

[17]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[18]  Xiang Lian,et al.  Dynamic skyline queries in metric spaces , 2008, EDBT '08.

[19]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[20]  Elke Achtert,et al.  Reverse k-nearest neighbor search in dynamic and general metric databases , 2009, EDBT '09.

[21]  Timos K. Sellis,et al.  Probabilistic Range Monitoring of Streaming Uncertain Positions in GeoSocial Networks , 2012, SSDBM.

[22]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[23]  Hans-Peter Kriegel,et al.  Efficient and effective server-sided distributed clustering , 2005, CIKM '05.

[24]  Andrea Pitasi,et al.  The Fourth Paradigm , 2014 .

[25]  Chi-Yin Chow,et al.  Probabilistic Verifiers: Evaluating Constrained Nearest-Neighbor Queries over Uncertain Data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[26]  Jennifer Widom,et al.  Working Models for Uncertain Data , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[27]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[28]  Panos Kalnis,et al.  Efficient OLAP Operations in Spatial Data Warehouses , 2001, SSTD.

[29]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[30]  Hans-Peter Kriegel,et al.  Constrained reverse nearest neighbor search on mobile objects , 2009, GIS.

[31]  Hans-Peter Kriegel,et al.  Efficient Traffic Density Prediction in Road Networks Using Suffix Trees , 2012, KI - Künstliche Intelligenz.

[32]  Xiang Lian,et al.  Probabilistic Inverse Ranking Queries over Uncertain Data , 2009, DASFAA.

[33]  Ambuj K. Singh,et al.  APLA: Indexing Arbitrary Probability Distributions , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[34]  Hui Xiong,et al.  Discovering colocation patterns from spatial data sets: a general approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[35]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[36]  Alok N. Choudhary,et al.  Uncertain Range Queries for Necklaces , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[37]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[38]  Jae-Gil Lee,et al.  Traffic Density-Based Discovery of Hot Routes in Road Networks , 2007, SSTD.

[39]  Jimeng Sun,et al.  The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries , 2003, VLDB.

[40]  Feifei Li,et al.  Efficient Processing of Top-k Queries in Uncertain Databases with x-Relations , 2008, IEEE Transactions on Knowledge and Data Engineering.

[41]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[42]  Jiawei Han,et al.  Adaptive Fastest Path Computation on a Road Network: A Traffic Mining Approach , 2007, VLDB.

[43]  Hans-Peter Kriegel,et al.  Incremental Reverse Nearest Neighbor Ranking , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[44]  C. Stein Approximate computation of expectations , 1986 .

[45]  Yufei Tao,et al.  Reverse nearest neighbors in large graphs , 2006, IEEE Transactions on Knowledge and Data Engineering.

[46]  W. Beyer CRC Standard Probability And Statistics Tables and Formulae , 1990 .

[47]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[48]  Xin Zhang,et al.  Fast mining of spatial collocations , 2004, KDD.

[49]  Christos Faloutsos,et al.  Center-piece subgraphs: problem definition and fast solutions , 2006, KDD '06.

[50]  Brian Lee Smith,et al.  TRAFFIC FLOW FORECASTING USING APPROXIMATE NEAREST NEIGHBOR NONPARAMETRIC REGRESSION , 2000 .

[51]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[52]  Jeffrey Scott Vitter,et al.  Efficient Indexing Methods for Probabilistic Threshold Queries over Uncertain Data , 2004, VLDB.

[53]  Christopher Ré,et al.  Query Evaluation on Probabilistic Databases , 2006, IEEE Data Eng. Bull..

[54]  W. Feller,et al.  The fundamental limit theorems in probability , 1945 .

[55]  Yufei Tao,et al.  Reverse Nearest Neighbor Search in Metric Spaces , 2006, IEEE Transactions on Knowledge and Data Engineering.

[56]  Xiang Lian,et al.  Probabilistic ranked queries in uncertain databases , 2008, EDBT '08.

[57]  Hans-Peter Kriegel,et al.  Reverse k-Nearest Neighbor Search Based on Aggregate Point Access Methods , 2009, SSDBM.

[58]  B Urbanc,et al.  Neuron recognition by parallel Potts segmentation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Christian Böhm,et al.  Probabilistic Ranking Queries on Gaussians , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[60]  Hans-Peter Kriegel,et al.  Reverse k-Nearest Neighbor monitoring on mobile objects , 2010, GIS '10.

[61]  Jon Louis Bentley,et al.  Engineering a sort function , 1993, Softw. Pract. Exp..

[62]  Hans-Peter Kriegel,et al.  Continuous Probabilistic Count Queries in Wireless Sensor Networks , 2011, SSTD.

[63]  Suman Nath,et al.  Instrumenting the earth: next-generation sensor networks and environmental science , 2009, The Fourth Paradigm.

[64]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[65]  I. Shevtsova An improvement of convergence rate estimates in the Lyapunov theorem , 2010 .

[66]  Dimitrios Gunopulos,et al.  Indexing spatiotemporal archives , 2006, The VLDB Journal.

[67]  Feifei Li,et al.  Semantics of Ranking Queries for Probabilistic Data , 2011, IEEE Transactions on Knowledge and Data Engineering.

[68]  Tom Brijs,et al.  Profiling high frequency accident locations using associations rules , 2002 .

[69]  Ihab F. Ilyas,et al.  Efficient search for the top-k probable nearest neighbors in uncertain databases , 2008, Proc. VLDB Endow..

[70]  Parag Agrawal,et al.  Trio: a system for data, uncertainty, and lineage , 2006, VLDB.

[71]  Nikos Pelekis,et al.  Algorithms for Nearest Neighbor Search on Moving Object Trajectories , 2007, GeoInformatica.

[72]  Yoshiharu Ishikawa,et al.  Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[73]  Prithviraj Sen,et al.  Representing and Querying Correlated Tuples in Probabilistic Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[74]  Divyakant Agrawal,et al.  Reverse Nearest Neighbor Queries for Dynamic Databases , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[75]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[76]  Reynold Cheng,et al.  Efficient Evaluation of Imprecise Location-Dependent Queries , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[77]  Elke Achtert,et al.  Efficient reverse k-nearest neighbor search in arbitrary metric spaces , 2006, SIGMOD Conference.

[78]  Roberto Tamassia,et al.  Continuous probabilistic nearest-neighbor queries for uncertain trajectories , 2009, EDBT '09.

[79]  Hans-Peter Kriegel,et al.  Boosting spatial pruning: on optimal pruning of MBRs , 2010, SIGMOD Conference.

[80]  Xi Zhang,et al.  Semantics and evaluation of top-k queries in probabilistic databases , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[81]  Feifei Li,et al.  Efficient Processing of Top-k Queries in Uncertain Databases with x-Relations , 2008, IEEE Trans. Knowl. Data Eng..

[82]  Feifei Li,et al.  Finding frequent items in probabilistic data , 2008, SIGMOD Conference.

[83]  Hans-Peter Kriegel,et al.  Probabilistic Similarity Join on Uncertain Data , 2006, DASFAA.

[84]  Philip S. Yu,et al.  Mining Frequent Itemsets over Uncertain Databases , 2012, Proc. VLDB Endow..

[85]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[86]  Hans-Peter Kriegel,et al.  Probabilistic frequent itemset mining in uncertain databases , 2009, KDD.

[87]  Roberto Tamassia,et al.  Ranking continuous nearest neighbors for uncertain trajectories , 2011, The VLDB Journal.

[88]  Esteban Zimányi,et al.  Query Evaluation in Probabilistic Relational Databases , 1997, Theor. Comput. Sci..

[89]  Dan Olteanu,et al.  Fast and Simple Relational Processing of Uncertain Data , 2007, 2008 IEEE 24th International Conference on Data Engineering.

[90]  Ben Kao,et al.  A Decremental Approach for Mining Frequent Itemsets from Uncertain Data , 2008, PAKDD.

[91]  Xiang Lian,et al.  Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data , 2009, The VLDB Journal.

[92]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[93]  Jian Li,et al.  A unified approach to ranking in probabilistic databases , 2009, The VLDB Journal.

[94]  Jian Pei,et al.  Ranking queries on uncertain data: a probabilistic threshold approach , 2008, SIGMOD Conference.

[95]  Hui Xiong,et al.  Mining Co-Location Patterns with Rare Events from Spatial Data Sets , 2006, GeoInformatica.

[96]  Elke A. Rundensteiner,et al.  Hierarchical optimization of optimal path finding for transportation applications , 1996, CIKM '96.

[97]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[98]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[99]  Yufei Tao,et al.  Time-parameterized queries in spatio-temporal databases , 2002, SIGMOD '02.

[100]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[101]  Hans-Peter Kriegel,et al.  Model-based probabilistic frequent itemset mining , 2013, Knowledge and Information Systems.

[102]  Edward Hung,et al.  Mining Frequent Itemsets from Uncertain Data , 2007, PAKDD.

[103]  Markus Schneider,et al.  Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types , 1999, SSD.

[104]  Hans-Peter Kriegel,et al.  Probabilistic Nearest-Neighbor Query on Uncertain Objects , 2007, DASFAA.

[105]  Peter Sanders,et al.  Highway Hierarchies Hasten Exact Shortest Path Queries , 2005, ESA.

[106]  Rajeev Rastogi,et al.  A cost-based model and effective heuristic for repairing constraints by value modification , 2005, SIGMOD '05.

[107]  Charu C. Aggarwal,et al.  Frequent pattern mining with uncertain data , 2009, KDD.

[108]  J. Manyika Big data: The next frontier for innovation, competition, and productivity , 2011 .

[109]  Hans-Peter Kriegel,et al.  Similarity search and mining in uncertain databases , 2010, Proc. VLDB Endow..

[110]  Mohamed A. Soliman,et al.  Top-k Query Processing in Uncertain Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[111]  Hans-Peter Kriegel,et al.  Indexing uncertain spatio-temporal data , 2012, CIKM.

[112]  Hans-Peter Kriegel,et al.  Probabilistic Similarity Search for Uncertain Time Series , 2009, SSDBM.

[113]  S. Pallottino,et al.  Shortest Path Algorithms in Transportation models: classical and innovative aspects , 1997 .

[114]  Reynold Cheng,et al.  Efficient Mining of Frequent Item Sets on Large Uncertain Databases , 2012, IEEE Transactions on Knowledge and Data Engineering.

[115]  David Altman,et al.  Fuzzy Set Theoretic Approaches for Handling Imprecision in Spatial Analysis , 1994, Int. J. Geogr. Inf. Sci..

[116]  Hanan Samet,et al.  Ranking in Spatial Databases , 1995, SSD.

[117]  Yufei Tao,et al.  Reverse kNN Search in Arbitrary Dimensionality , 2004, VLDB.

[118]  Ge Yu,et al.  Interval reverse nearest neighbor queries on uncertain data with Markov correlations , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[119]  Bin Jiang,et al.  Probabilistic Skylines on Uncertain Data , 2007, VLDB.

[120]  Reynold Cheng,et al.  Accelerating probabilistic frequent itemset mining: a model-based approach , 2010, CIKM.

[121]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[122]  Klaus H. Hinrichs,et al.  Managing uncertainty in moving objects databases , 2004, TODS.

[123]  Elke Achtert,et al.  ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series , 2009, SSTD.

[124]  Isabelle Bloch,et al.  On fuzzy distances and their use in image processing under imprecision , 1999, Pattern Recognit..

[125]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[126]  Susanne E. Hambrusch,et al.  Orion 2.0: native support for uncertain data , 2008, SIGMOD Conference.

[127]  Hans-Peter Kriegel,et al.  Continuous Inverse Ranking Queries in Uncertain Streams , 2011, SSDBM.

[128]  Guangzhong Sun,et al.  Driving with knowledge from the physical world , 2011, KDD.

[129]  Jian Li,et al.  Ranking continuous probabilistic datasets , 2010, Proc. VLDB Endow..

[130]  Jian Pei,et al.  Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data , 2010, IEEE Transactions on Knowledge and Data Engineering.

[131]  Hiroyuki Kitagawa,et al.  GPU acceleration of probabilistic frequent itemset mining from uncertain databases , 2012, CIKM.

[132]  Hans-Peter Kriegel,et al.  Density-based clustering of uncertain data , 2005, KDD '05.

[133]  Tang Xinming,et al.  Analysis of topological relations between fuzzy regions in a general fuzzy topological space : SDH 2002 , 2002 .

[134]  Yufei Tao,et al.  Range search on multidimensional uncertain data , 2007, TODS.

[135]  Kai Zheng,et al.  K-nearest neighbor search for fuzzy objects , 2010, SIGMOD Conference.

[136]  Yang Du,et al.  Finding Fastest Paths on A Road Network with Speed Patterns , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[137]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[138]  Hans-Peter Kriegel,et al.  Probabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases , 2010, SSDBM.

[139]  Ralf Hartmut Güting,et al.  Efficient k-nearest neighbor search on moving object trajectories , 2010, The VLDB Journal.

[140]  Hans-Peter Kriegel,et al.  Hot Item Detection in Uncertain Data , 2009, PAKDD.

[141]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[142]  Yu Zheng,et al.  Computing with Spatial Trajectories , 2011, Computing with Spatial Trajectories.

[143]  Philip S. Yu,et al.  PROUD: a probabilistic approach to processing similarity queries over uncertain data streams , 2009, EDBT '09.

[144]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[145]  Sakti Pramanik,et al.  HiTi graph model of topographical road maps in navigation systems , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[146]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[147]  Ping Fan,et al.  CkNN Query Processing over Moving Objects with Uncertain Speeds in Road Networks , 2011, APWeb.

[148]  Ihab F. Ilyas,et al.  Ranking with Uncertain Scores , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[149]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[150]  Hans-Peter Kriegel,et al.  Incremental Reverse Nearest Neighbor Ranking in Vector Spaces , 2009, SSTD.

[151]  Jian Tang,et al.  Enhancing Effectiveness of Outlier Detections for Low Density Patterns , 2002, PAKDD.

[152]  Ouri Wolfson,et al.  The Geometry of Uncertainty in Moving Objects Databases , 2002, EDBT.

[153]  Shashi Shekhar,et al.  Data Mining and Visualization of Twin-Cities Traffic Data , 2001 .

[154]  Dimitrios Gunopulos,et al.  Nearest Neighbor Queries in a Mobile Environment , 1999, Spatio-Temporal Database Management.

[155]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[156]  Christos Faloutsos,et al.  Fast Nearest Neighbor Search in Medical Image Databases , 1996, VLDB.

[157]  Hans-Peter Kriegel,et al.  Statistical Density Prediction in Traffic Networks , 2008, SDM.

[158]  Markus Schneider Fuzzy topological predicates, their properties, and their integration into query languages , 2001, GIS '01.

[159]  Yufei Tao,et al.  Continuous Nearest Neighbor Search , 2002, VLDB.

[160]  Ralf Hartmut Güting Dr.rer.nat An introduction to spatial database systems , 2005, The VLDB Journal.

[161]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[162]  Jef Wijsen,et al.  Database repairing using updates , 2005, TODS.

[163]  Yufei Tao,et al.  Indexing Multi-Dimensional Uncertain Data with Arbitrary Probability Density Functions , 2005, VLDB.

[164]  Norbert Fuhr,et al.  A probabilistic relational algebra for the integration of information retrieval and database systems , 1997, TOIS.

[165]  Hans-Peter Kriegel,et al.  A novel probabilistic pruning approach to speed up similarity queries in uncertain databases , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[166]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[167]  Ambuj K. Singh,et al.  Probabilistic Segmentation and Analysis of Horizontal Cells , 2006, Sixth International Conference on Data Mining (ICDM'06).

[168]  Jian Li,et al.  Consensus answers for queries over probabilistic databases , 2008, PODS.

[169]  Hans-Peter Kriegel,et al.  3D Similarity Search by Shape Approximation , 1997, SSD.

[170]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[171]  Christian Böhm,et al.  High performance clustering based on the similarity join , 2000, CIKM '00.

[172]  Laurence R. Rilett,et al.  Heuristic shortest path algorithms for transportation applications: State of the art , 2006, Comput. Oper. Res..

[173]  Sunil Prabhakar,et al.  Querying imprecise data in moving object environments , 2003, IEEE Transactions on Knowledge and Data Engineering.

[174]  Christopher Ré,et al.  Event queries on correlated probabilistic streams , 2008, SIGMOD Conference.

[175]  Reynold Cheng,et al.  Evaluating probability threshold k-nearest-neighbor queries over uncertain data , 2009, EDBT '09.

[176]  Carson Kai-Sang Leung,et al.  Efficient Mining of Frequent Patterns from Uncertain Data , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[177]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[178]  Yan Huang,et al.  Finding Sequential Patterns from a Massive Number of Spatio-Temporal Events , 2006, SDM.

[179]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[180]  Christopher Ré,et al.  Probabilistic databases: diamonds in the dirt , 2009, CACM.

[181]  Jianzhong Li,et al.  Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics , 2010, KDD.

[182]  Jianzhong Li,et al.  Mining frequent subgraphs over uncertain graph databases under probabilistic semantics , 2012, The VLDB Journal.

[183]  Hans-Peter Kriegel,et al.  ProUD: Probabilistic Ranking in Uncertain Databases , 2008, SSDBM.

[184]  Yuan-Ko Huang,et al.  Efficient Continuous K-Nearest Neighbor Query Processing over Moving Objects with Uncertain Speed and Direction , 2008, SSDBM.

[185]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[186]  Jian Pei,et al.  Query answering techniques on uncertain and probabilistic data: tutorial summary , 2008, SIGMOD Conference.

[187]  Bart Kuijpers,et al.  Trajectory databases: Data models, uncertainty and complete query languages , 2007, J. Comput. Syst. Sci..

[188]  Jianzhong Li,et al.  Mining Frequent Subgraph Patterns from Uncertain Graph Data , 2010, IEEE Transactions on Knowledge and Data Engineering.

[189]  Anna Liu,et al.  PODS: a new model and processing algorithms for uncertain data streams , 2010, SIGMOD Conference.

[190]  Hans-Peter Kriegel,et al.  Probabilistic ranking in fuzzy object databases , 2012, CIKM '12.

[191]  Man Lung Yiu,et al.  Reverse Nearest Neighbors Search in Ad Hoc Subspaces , 2006, IEEE Transactions on Knowledge and Data Engineering.

[192]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[193]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.