Satellite remote sensing of grasslands: from observation to management—a review

Aims Grasslands are the world’s most extensive terrestrial ecosystem, and are a major feed source for livestock. Meeting increasing demand for meat and other dairy products in a sustainable manner is a big challenge. At a field scale, Global Positioning System and ground-based sensor technologies provide promising tools for grassland and herd management with high precision. With the growth in availability of spaceborne remote sensing data, it is therefore important to revisit the relevant methods and applications that can exploit this imagery. In this article, we have reviewed the (i) current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, (ii) the technological and methodological developments to retrieve different grassland biophysical parameters and management characteristics (i.e. degradation, grazing intensity) and (iii) identified the key remaining challenges and some new upcoming trends for future development. Important Findings The retrieval of grassland biophysical parameters have evolved in recent years from classical regression analysis to more complex, efficient and robust modeling approaches, driven by satellite data, and are likely to continue to be the most robust method for deriving grassland information, however these require more high quality calibration and validation data. We found that the hypertemporal satellite data are widely used for time series generation, and particularly to overcome cloud contamination issues, but the current low spatial resolution of these instruments precludes their use for field-scale application in many countries. This trend may change with the current rise in launch of satellite constellations, such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by Skybox Imaging. Microwave imagery has not been widely used for grassland applications, and a better understanding of the backscatter behaviour from different phenological stages is needed for more reliable products in cloudy regions. The development of hyperspectral satellite instrumentation and analytical methods will help for more detailed discrimination of habitat types, and the development of tools for greater end-user operation.

[1]  M. Goodchild,et al.  Scale in Remote Sensing and GIS , 2023 .

[2]  Claudia Notarnicola,et al.  Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data , 2015, Remote. Sens..

[3]  Zhi Tang,et al.  Estimation of Grassland Live Fuel Moisture Content From Ratio of Canopy Water Content and Foliage Dry Biomass , 2015, IEEE Geoscience and Remote Sensing Letters.

[4]  Brian W. Barrett,et al.  Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Christian Schuster,et al.  Grassland habitat mapping by intra-annual time series analysis - Comparison of RapidEye and TerraSAR-X satellite data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Mehrez Zribi,et al.  Irrigated Grassland Monitoring Using a Time Series of TerraSAR-X and COSMO-SkyMed X-Band SAR Data , 2014, Remote. Sens..

[7]  Ingmar Nitze,et al.  Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches , 2014 .

[8]  Jürgen Schellberg,et al.  Frontiers and perspectives on research strategies in grassland technology , 2014, Crop and Pasture Science.

[9]  Julien Morel,et al.  Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island , 2014, Remote. Sens..

[10]  Stuart Green,et al.  Application of statistical and machine learning models for grassland yield estimation based on a hypertemporal satellite remote sensing time series , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[11]  Samuel Corgne,et al.  Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring , 2014, Remote. Sens..

[12]  J. Soussana,et al.  Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems , 2014 .

[13]  A. Mekasha,et al.  Inter-connection between land use/land cover change and herders’/farmers’ livestock feed resource management strategies: A case study from three Ethiopian eco-environments , 2014 .

[14]  Jürgen Schellberg,et al.  The Steinach Grassland Experiment: Soil chemical properties, sward height and plant species composition in three cut alluvial meadow after decades-long fertilizer application , 2014 .

[15]  Daniel A. Friess,et al.  Mangrove biomass estimation in Southwest Thailand using machine learning , 2013 .

[16]  T. Hwang,et al.  Optical remote sensing of terrestrial ecosystem primary productivity , 2013 .

[17]  Bin Xu,et al.  Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia’s grassland between 2001 and 2011 , 2013 .

[18]  Irena Hajnsek,et al.  Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-X data , 2013 .

[19]  Z. Qin,et al.  Monitoring and analysis of grassland desertification dynamics using Landsat images in Ningxia, China , 2013 .

[20]  A. Vanak,et al.  Importance of Native Grassland Habitat for Den-Site Selection of Indian Foxes in a Fragmented Landscape , 2013, PloS one.

[21]  M. Hill Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect , 2013 .

[22]  R. Dickinson,et al.  The role of satellite remote sensing in climate change studies , 2013 .

[23]  Peter M. Atkinson,et al.  Ecological sustainability in rangelands: the contribution of remote sensing , 2013 .

[24]  D. Bonfil,et al.  Remote Sensing for sustainable agriculture , 2013 .

[25]  Piero Toscano,et al.  imulation of olive grove gross primary production by the combination of ground nd multi-sensor satellite data , 2013 .

[26]  Xin Wang,et al.  Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia , 2013, Remote. Sens..

[27]  K. Price,et al.  Estimating above-ground net primary productivity of the tallgrass prairie ecosystem of the Central Great Plains using AVHRR NDVI , 2013 .

[28]  M. Trotter PA Innovations in livestock, grazing systems and rangeland management to improve landscape productivity and sustainability , 2013 .

[29]  A. C. Seijmonsbergen,et al.  Monitoring land use and land cover change in mountain regions: An example in the Jalca grasslands of the Peruvian Andes , 2013 .

[30]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[31]  Sergio Ruggieri,et al.  Field partition by proximal and remote sensing data fusion , 2013 .

[32]  Kari Luojus,et al.  Effect of reindeer grazing on snowmelt, albedo and energy balance based on satellite data analyses. , 2013 .

[33]  Jiyuan Liu,et al.  Effects of grassland restoration programs on ecosystems in arid and semiarid China. , 2013, Journal of environmental management.

[34]  Zheng Niu,et al.  Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data , 2013 .

[35]  Clement Atzberger,et al.  Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs , 2013, Remote. Sens..

[36]  Christian Schuster,et al.  First Results of Monitoring Nature Conservation Sites in Alpine Region by Using Very High Resolution (VHR) X-Band SAR Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Dario Papale,et al.  Simulation of grassland productivity by the combination of ground and satellite data , 2013 .

[38]  Josef Hakl,et al.  The use of a rising plate meter to evaluate lucerne (Medicago sativa L.) height as an important agronomic trait enabling yield estimation , 2012 .

[39]  Andrew K. Skidmore,et al.  Estimation of grassland biomass and nitrogen using MERIS data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[40]  N. Elagib,et al.  Implications of climate, land-use and land-cover changes for pastoralism in eastern Sudan , 2012 .

[41]  Geping Luo,et al.  Moderate grazing can promote aboveground primary production of grassland under water stress , 2012 .

[42]  B. Kleinschmit,et al.  Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data , 2012 .

[43]  Xulin Guo,et al.  Assessing light to moderate grazing effects on grassland production using satellite imagery , 2012 .

[44]  Jürgen Janoth,et al.  TerraSAR-X2 - Mission overview , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[45]  Christian Schuster,et al.  Multi-temporal detection of grassland vegetation with RapidEye imagery and a spectral-temporal library , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Annekatrin Metz,et al.  Synergetic use of TerraSAR-X and Radarsat-2 time series data for identification and characterization of grassland types - a case study in Southern Bavaria, Germany , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[47]  G. Daily,et al.  Biodiversity loss and its impact on humanity , 2012, Nature.

[48]  A. Skidmore,et al.  Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model , 2012 .

[49]  F. Siegert,et al.  Assessment of grassland use intensity by remote sensing to support conservation schemes , 2012 .

[50]  Dave Clark,et al.  Spatio-temporal modelling of biomass of intensively grazed perennial dairy pastures using multispectral remote sensing , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Michael Schmidt,et al.  Separating grazing and rainfall effects at regional scale using remote sensing imagery: A dynamic reference-cover method , 2012 .

[52]  John Rogan,et al.  Segmentation of Landsat Thematic Mapper imagery improves buffelgrass (Pennisetum ciliare) pasture mapping in the Sonoran Desert of Mexico , 2012 .

[53]  Michael Sommer,et al.  Application of satellite remote sensing for mapping wind erosion risk and dust emission‐deposition in Inner Mongolia grassland, China , 2012 .

[54]  E. Dwyer,et al.  Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS Global Vegetation Index , 2012 .

[55]  L. Cizek,et al.  Importance of marginal habitats for grassland diversity: fallows and overgrown tall‐grass steppe as key habitats of endangered ground‐beetle Carabus hungaricus , 2012 .

[56]  G. A. B. Yiran,et al.  A synthesis of remote sensing and local knowledge approaches in land degradation assessment in the Bawku East District, Ghana , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Aditya Singh,et al.  Use of MODIS NDVI to evaluate changing latitudinal gradients of rangeland phenology in Sudano-Sahelian West Africa , 2011 .

[58]  K. Itten,et al.  Hyperspectral remote sensing for estimating aboveground biomass and for exploring species richness patterns of grassland habitats , 2011 .

[59]  N. Sifakis,et al.  Towards a wider uptake of remote sensing in Natura 2000 monitoring: Streamlining remote sensing products with users' needs and expectations , 2011, 2011 2nd International Conference on Space Technology.

[60]  A. Skidmore,et al.  Mapping grassland leaf area index with airborne hyperspectral imagery : a comparison study of statistical approaches and inversion of radiative transfer models , 2011 .

[61]  Y. G. Prasad,et al.  Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae) , 2011 .

[62]  Joseph R. Buckley,et al.  Investigating RADARSAT-2 as a tool for monitoring grassland in western Canada , 2011 .

[63]  Andre Zerger,et al.  Remote detection of grassland nutrient status for assessing ground layer vegetation condition and restoration potential of eucalypt grassy woodlands , 2011 .

[64]  Bethany A. Bradley,et al.  Assessing the short-term impacts of changing grazing regime at the landscape scale with remote sensing , 2011 .

[65]  Xulin Guo,et al.  Investigating vegetation biophysical and spectral parameters for detecting light to moderate grazing effects: a case study in mixed grass prairie , 2011 .

[66]  Jan Hanspach,et al.  Plant communities of central Tibetan pastures in the Alpine Steppe / Kobresia pygmaea ecotone , 2011 .

[67]  Christian Schuster,et al.  Towards Detecting Swath Events in TerraSAR-X Time Series to Establish NATURA 2000 Grassland Habitat Swath Management as Monitoring Parameter , 2011, Remote. Sens..

[68]  Yuan Sun,et al.  Grassland degradation in the Western of Songnen plain , 2011, 2011 19th International Conference on Geoinformatics.

[69]  J. Six,et al.  Object-based crop identification using multiple vegetation indices, textural features and crop phenology , 2011 .

[70]  Andrew K. Skidmore,et al.  Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[71]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[72]  Caspar A. Mücher,et al.  Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .

[73]  Michael J. Hill,et al.  Quantitative mapping of pasture biomass using satellite imagery , 2011 .

[74]  S. Suárez‐Seoane,et al.  Using predictive models as a spatially explicit support tool for managing cultural landscapes , 2011 .

[75]  S. Goetz,et al.  Tundra vegetation effects on pan-Arctic albedo , 2011 .

[76]  R. Ali,et al.  An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques , 2011 .

[77]  Philip Marsh,et al.  Snowmelt energetics at a shrub tundra site in the western Canadian Arctic , 2010 .

[78]  Chenghai Yang,et al.  Mapping three invasive weeds using airborne hyperspectral imagery , 2010, Ecol. Informatics.

[79]  K. Paudel,et al.  Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal , 2010 .

[80]  Volker C. Radeloff,et al.  Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing , 2010 .

[81]  R. López-Lozano,et al.  Site-specific management units in a commercial maize plot delineated using very high resolution remote sensing and soil properties mapping , 2010 .

[82]  Daniel Alves Aguiar,et al.  Modis time series to assess pasture land , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[83]  Joseph R. Buckley,et al.  Monitoring grasslands with radarsat 2 quad-pol imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[84]  Chen Wang,et al.  Classification of Grassland Types by MODIS Time-Series Images in Tibet, China , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[85]  Liu Wei,et al.  Using Remote Sensing and GIS Technologies to Estimate Grass Yield and Livestock Carrying Capacity of Alpine Grasslands in Golog Prefecture, China , 2010 .

[86]  J. Schellberg,et al.  Ground and satellite based assessment of rangeland management in sub-tropical Argentina , 2010 .

[87]  Cuizhen Wang,et al.  Trajectory-based warm season grassland mapping in Missouri prairies with multi-temporal ASTER imagery , 2010 .

[88]  Sudhanshu Sekhar Panda,et al.  Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques , 2010, Remote. Sens..

[89]  Fan Xia,et al.  Assessing object-based classification: advantages and limitations , 2009 .

[90]  Lei Zhang,et al.  A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China , 2009 .

[91]  C. Munyati,et al.  Multitemporal Landsat TM imagery analysis for mapping and quantifying degraded rangeland in the Bahurutshe communal grazing lands, South Africa , 2009 .

[92]  C. Malmström,et al.  The effects of phenology on indirect measures of aboveground biomass in annual grasses , 2009 .

[93]  Yuhong He,et al.  Reflectance measures of grassland biophysical structure , 2009 .

[94]  R. Phillips,et al.  Integration of geospatial and cattle nutrition information to estimate paddock grazing capacity in Northern US prairie , 2009 .

[95]  M. Holmgren,et al.  Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas , 2009 .

[96]  Zhao-Liang Li,et al.  Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling , 2009, Sensors.

[97]  Birgit Kleinschmit,et al.  Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats , 2008 .

[98]  Pedro Antonio Gutiérrez,et al.  Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data , 2008 .

[99]  Guangsheng Zhou,et al.  Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China , 2008 .

[100]  Z. Qin,et al.  MODIS‐based remote sensing monitoring of grass production in China , 2008 .

[101]  Cho-ying Huang,et al.  Climate anomalies provide opportunities for large‐scale mapping of non‐native plant abundance in desert grasslands , 2008 .

[102]  Matthias Rothmund,et al.  Precision agriculture on grassland : Applications, perspectives and constraints , 2008 .

[103]  J. Hill,et al.  Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece , 2008 .

[104]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[105]  G. Han,et al.  Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia , 2008 .

[106]  L. Vermeire,et al.  Vegetation response to seven grazing treatments in the Northern Great Plains , 2008 .

[107]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[108]  J. V. Soares,et al.  Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data , 2007 .

[109]  J. Derner,et al.  CARBON SEQUESTRATION AND RANGELANDS: A SYNTHESIS OF LAND MANAGEMENT AND PRECIPITATION EFFECTS , 2007 .

[110]  Bin Xu,et al.  Remote sensing monitoring upon the grass production in China , 2007 .

[111]  S. Verzakov,et al.  Estimating grassland biomass using SVM band shaving of hyperspectral data , 2007 .

[112]  B. Ji,et al.  Artificial neural networks for rice yield prediction in mountainous regions , 2007, The Journal of Agricultural Science.

[113]  C. Ovalle,et al.  Effects of grazing intensity in grasslands of the Espinal of central Chile , 2006 .

[114]  V. Retzer Impacts of grazing and rainfall variability on the dynamics of a Sahelian rangeland revisited ()—new insights from old data , 2006 .

[115]  José M. Paruelo,et al.  Characterizing fragmentation in temperate South America grasslands , 2006 .

[116]  Vescovo Loris,et al.  Mapping the green herbage ratio of grasslands using both aerial and satellite-derived spectral reflectance , 2006 .

[117]  J. Paruelo,et al.  Potential long‐term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America , 2006 .

[118]  J. Paruelo,et al.  Seasonal Variation in Aboveground Production and Radiation-use Efficiency of Temperate rangelands Estimated through Remote Sensing , 2006, Ecosystems.

[119]  I. Jonckheere,et al.  Monitoring herbaceous biomass and water content with SPOT VEGETATION time-series to improve fire risk assessment in savanna ecosystems , 2006 .

[120]  Jay Gao,et al.  Quantification of grassland properties: how it can benefit from geoinformatic technologies? , 2006 .

[121]  J. Dymond,et al.  Use of VEGETATION satellite imagery to map pasture quality for input to a methane budget of New Zealand , 2006 .

[122]  Piermaria Corona,et al.  Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy , 2006 .

[123]  John R. Jensen,et al.  Fuzzy learning vector quantization for hyperspectral coastal vegetation classification , 2006 .

[124]  Lars Hein,et al.  The impacts of grazing and rainfall variability on the dynamics of a Sahelian rangeland , 2006 .

[125]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[126]  A. Laidlaw,et al.  GrazeGro: a European herbage growth model to predict pasture production in perennial ryegrass swards for decision support , 2005 .

[127]  Jong-Sen Lee,et al.  Integration of optical and radar classifications for mapping pasture type in Western Australia , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[128]  Kalifa Goïta,et al.  Remote sensing-based spatio-temporal modeling to predict biomass in sahelian grazing ecosystem , 2005 .

[129]  J. Hicke,et al.  The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity , 2005 .

[130]  Tsuyoshi Akiyama,et al.  Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China , 2005 .

[131]  Hector Erives,et al.  Automated registration of hyperspectral images for precision agriculture , 2005 .

[132]  K. Kawamura,et al.  Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China , 2005 .

[133]  G. Donald,et al.  Estimation of pasture growth rate in the south west of Western Australia from AVHRR NDVI and climate data , 2004 .

[134]  W. Schacht,et al.  Stocking rate and grazing frequency effects on Nebraska Sandhills meadows , 2004 .

[135]  S. Urquiaga,et al.  Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline , 2004 .

[136]  A. Skidmore,et al.  Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions , 2004 .

[137]  Rick L. Lawrence,et al.  Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis , 2004 .

[138]  Godela Rossner,et al.  Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods , 2004 .

[139]  J. Bard,et al.  Ontologies in biology: design, applications and future challenges , 2004, Nature Reviews Genetics.

[140]  Maj-Liz Nordberg,et al.  Monitoring Change in Mountainous Dry-heath Vegetation at a Regional ScaleUsing Multitemporal Landsat TM Data , 2003, Ambio.

[141]  S. Ustin,et al.  Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing , 2003 .

[142]  Jay Gao,et al.  A spectral reflectance-based approach to quantification of grassland cover from Landsat TM imagery , 2003 .

[143]  Thuy Le Toan,et al.  Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management , 2003 .

[144]  Prasad S. Thenkabail,et al.  Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images , 2003 .

[145]  D. T. Booth,et al.  Rangeland Monitoring Using Remote Sensing , 2003 .

[146]  Kevin P. Price,et al.  Comparison of Landsat TM and ERS-2 SAR data for discriminating among grassland types and treatments in eastern Kansas , 2002 .

[147]  Seiho Uratsuka,et al.  Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables , 2002 .

[148]  C. Swaay,et al.  The importance of calcareous grasslands for butterflies in Europe , 2002 .

[149]  B. Wylie,et al.  Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands a case study , 2002 .

[150]  Kevin P. Price,et al.  Evaluating vegetation phenological patterns in Inner Mongolia using NDVI time-series analysis , 2002 .

[151]  S J Woodward,et al.  Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures. , 2001, Environment international.

[152]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[153]  Lijian Han,et al.  A method of modifying error for non-synchronicity of grass yield remote sensing estimation and measurement , 2001 .

[154]  H. Nagendra Using remote sensing to assess biodiversity , 2001 .

[155]  Elizabeth Pattey,et al.  Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[156]  James W. Jones,et al.  Short survey Scaling-up crop models for climate variability applications $ , 2000 .

[157]  J. Wellens,et al.  Monitoring the grazing resources of the Badia region, Jordan, using remote sensing , 1999 .

[158]  Harini Nagendra,et al.  Satellite imagery as a tool for monitoring species diversity: an assessment , 1999 .

[159]  G. Pickup,et al.  Identifying trends in land degradation in non‐equilibrium rangelands , 1998 .

[160]  D. O. Hall,et al.  The global carbon sink: a grassland perspective , 1998 .

[161]  Andrew D. Moore,et al.  GRAZPLAN: Decision support systems for Australian grazing enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro DSS , 1997 .

[162]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[163]  Hsin-I Wu,et al.  A semi-arid grazing ecosystem simulation model with probabilistic and fuzzy parameters , 1996 .

[164]  G. Pickup,et al.  Remote‐Sensing‐Based Condition Assessment for Nonequilibrium Rangelands Under Large‐Scale Commercial Grazing , 1994 .

[165]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[166]  M. Kimothi,et al.  Grassland mapping/monitoring of Banni, Kachchh (Gujarat) using remotely-sensed data , 1993 .

[167]  H. D. Williamson,et al.  Pasture status in a semi-arid grassland , 1993 .

[168]  R. H. Haas,et al.  Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands , 1993 .

[169]  J. Bartolome Application of Herbivore Optimization Theory to Rangelands of the Western United States. , 1993, Ecological applications : a publication of the Ecological Society of America.

[170]  J. Anderson,et al.  The Effects of Climate Change on Decomposition Processes in Grassland and Coniferous Forests. , 1991, Ecological applications : a publication of the Ecological Society of America.

[171]  Bruce K. Wylie,et al.  Satellite and ground-based pasture production assessment in Niger: 1986-1988 , 1991 .

[172]  S. Prince Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988 , 1991 .

[173]  Marc Benoit,et al.  SPOT HRV data to discriminate grassland quality , 1990 .

[174]  Paul T. Tueller,et al.  Remote sensing technology for rangeland management applications. , 1989 .

[175]  A. J. Belsky Does Herbivory Benefit Plants? A Review of the Evidence , 1986, The American Naturalist.

[176]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[177]  M. E. Castle A simple disc instrument for estimating herbage yield , 1976 .

[178]  Marc Zebisch,et al.  Remote Sensing-Based Monitoring of Potential Climate-Induced Impacts on Habitats , 2014 .

[179]  H. Tømmervik,et al.  Estimating lichen volume and reindeer winter pasture quality from Landsat imagery , 2014 .

[180]  B. Wylie,et al.  Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA , 2013 .

[181]  Virginia E. García-Millán,et al.  Validation of habitat assessment services in Natura 2000 sites : streamlining the role of stakeholders from user needs to conservation status evaluation , 2013 .

[182]  Xulin Guo,et al.  Can satellite imagery evaluate the pre-condition of a grazing experiment? , 2012 .

[183]  Bin Xu,et al.  On grass yield remote sensing estimation models of China's northern farming-pastoral ecotone , 2012 .

[184]  Xiaoming Feng,et al.  Grazing intensity monitoring in Northern China steppe: Integrating CENTURY model and MODIS data , 2011 .

[185]  A. Ausseil,et al.  Estimating pasture quality using Landsat ETM + : application for the greenhouse gas inventory of New Zealand , 2011 .

[186]  B. Krautzer,et al.  Grassland evaluation based on GIS model and Remote Sensing data for beef cattle grazing. , 2011 .

[187]  Michael Robertson,et al.  Integrating farmer knowledge, precision agriculture tools, and crop simulation modelling to evaluate management options for poor-performing patches in cropping fields , 2010 .

[188]  Glenn Newnham,et al.  IMPROVED METHODS FOR ASSESSMENT AND PREDICTION OF GRASSLAND CURING , 2010 .

[189]  Richard T. Conant,et al.  Soil organic carbon in managed pastures of the southeastern United States of America. , 2010 .

[190]  Ole Wendroth,et al.  Assessment of Pasture Biomass with the Normalized Difference Vegetation Index from Active Ground-Based Sensors , 2008 .

[191]  D. Gianelle,et al.  Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) , 2008 .

[192]  B. Kleinschmit,et al.  GIS and Remote Sensing for Natura 2000 Monitoring in Mediterranean Biogeographic Region , 2008 .

[193]  M. Boschetti,et al.  Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information , 2007 .

[194]  Lena Ask,et al.  Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors , 2007, Biodiversity and Conservation.

[195]  Li Xiaobing,et al.  Remote Sensing——Based Causation Analysis and Simulation of Urban Spatial Thermal Environment , 2006 .

[196]  G. Thorvaldsson,et al.  The influence of weather on early growth rate of grasses , 2005 .

[197]  G. Donald,et al.  "Pastures from Space" - quantitative estimation of pasture biomass and growth rate using satellite remote sensing. , 2004 .

[198]  G. Donald,et al.  Pastures from space - validation of predictions of pasture growth rates , 2004 .

[199]  Tuuli Toivonen,et al.  Landsat TM images in mapping of semi-natural grasslands and analysing of habitat pattern in an agricultural landscape in south-west Finland , 2003 .

[200]  J. Bouma,et al.  A wavelet characterization of high-resolution NDVI patterns for precision agriculture , 2001 .

[201]  G. Donald,et al.  Combining satellite data with a simulation model to describe spatial variability in pasture growth at a farm scale , 1999 .

[202]  G. Donald,et al.  Pasture Land Cover in Eastern Australia from NOAA-AVHRR NDVI and Classified Landsat TM , 1999 .

[203]  R. M. Hoffer,et al.  Biomass estimation on grazed and ungrazed rangelands using spectral indices , 1998 .

[204]  Liang Tian-gang,et al.  Estimating grassland yields using remote sensing and GIS technologies in China , 1998 .

[205]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[206]  G. Donald,et al.  Satellite derived maps of pasture growth status: association of classification with botanical composition , 1997 .

[207]  P. Curran,et al.  Technical Note Grass chlorophyll and the reflectance red edge , 1996 .

[208]  G. Donald,et al.  Integration of satellite remote sensing, simple bioclimatic models and GIS for assessment of pastoral development for a commercial grazing enterprise , 1996 .

[209]  A. Breymeyer Managed grasslands : regional studies , 1990 .