Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber

We report an ultrabroadband supercontinuum (SC) generation with high coherence property in all-normal-dispersion (ANDi) Te-based chalcogenide all-solid microstructured optical fiber (AS-MOF). The fiber was fabricated using a rod-in-tube method that presents four ${{\rm As}_2}{{\rm S}_3}$As2S3 glass rods selected as low refractive index material ($n = {2.4}$n=2.4) embedded in a ${{\rm Ge}_{20}}{{\rm As}_{20}}{{\rm Se}_{20}}{{\rm Te}_{40}}$Ge20As20Se20Te40 glass matrix ($n = {3.1}$n=3.1). The highly symmetrical four-hole MOF preform was fabricated through the computerized numerical control precision mechanical drilling method. By engineering the structure of the fiber, we determined an ANDi characteristic in the range of 2–13.5 µm when the core diameter of the fiber was $ \le\!{10\,\,\unicode{x00B5}{\rm m}}$≤10µm. Under pumping at 5 µm, a highly coherent SC generation in the range of 2–13.2 µm was generated in a 16-cm-long AS-MOF with core diameter of 9.8 µm.

[1]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. , 2013, Optics express.

[2]  N. Zhang,et al.  Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion. , 2019, Optics express.

[3]  L. Brilland,et al.  Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources. , 2010, Optics express.

[4]  S. Dai,et al.  Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber. , 2016, Optics letters.

[5]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[6]  Ole Bang,et al.  IR microscopy utilizing intense supercontinuum light source. , 2012, Optics express.

[7]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[8]  N. Zhang,et al.  Precision fabrication of a four-hole Ge15Sb15Se70 chalcogenide suspended-core fiber for generation of a 15–12 µm ultrabroad mid-infrared supercontinuum , 2019, Optical Materials Express.

[9]  A. Seddon A Prospective for New Mid‐Infrared Medical Endoscopy Using Chalcogenide Glasses , 2011 .

[10]  Ole Bang,et al.  Multimode supercontinuum generation in chalcogenide glass fibres. , 2016, Optics express.

[11]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[12]  Shixun Dai,et al.  1.4-7.2  μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. , 2017, Optics letters.

[13]  Guangming Tao,et al.  Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. , 2015, Optics express.

[14]  F. Smektala,et al.  Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers. , 2012, Optics express.

[15]  Tonglei Cheng,et al.  Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves , 2016 .

[16]  Stéphane Coen,et al.  Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. , 2004, Optics express.

[17]  Michael H Frosz,et al.  Validation of input-noise model for simulations of supercontinuum generation and rogue waves. , 2010, Optics express.

[18]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[19]  L. Brilland,et al.  Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers. , 2010, Optics express.

[20]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[21]  Periklis Petropoulos,et al.  Solid microstructured optical fiber. , 2003, Optics express.

[22]  Tonglei Cheng,et al.  Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. , 2016, Optics letters.

[23]  S. Engelsen,et al.  Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy , 2017 .

[24]  G. Qin,et al.  Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation , 2018, Journal of Lightwave Technology.

[25]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[26]  Takenobu Suzuki,et al.  Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser. , 2012, Optics letters.

[27]  W. Wadsworth,et al.  Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. , 2011, Optics express.

[28]  Alexander M. Heidt,et al.  Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers , 2010 .

[29]  Bruno Bureau,et al.  Development of Far‐Infrared‐Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics , 2007 .

[30]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[31]  Y. Messaddeq,et al.  Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires , 2015, 2015 Photonics North.

[32]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[33]  Alexander M. Heidt,et al.  Limits of coherent supercontinuum generation in normal dispersion fibers , 2017 .

[34]  Ryszard Stepien,et al.  Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers , 2017 .