Node-based Lagrangian relaxations for multicommodity capacitated fixed-charge network design

Abstract Classical Lagrangian relaxations for the multicommodity capacitated fixed-charge network design problem are the so-called flow and knapsack relaxations, where the resulting Lagrangian subproblems decompose by commodities and by arcs, respectively. We introduce node-based Lagrangian relaxations, where the resulting Lagrangian subproblem decomposes by nodes. We show that the Lagrangian dual bounds of these relaxations improve upon the linear programming relaxation bound, known to be equal to the Lagrangian dual bounds for the flow and knapsack relaxations. We also develop a Lagrangian matheuristic to compute upper bounds. The computational results on a set of benchmark instances show that the Lagrangian matheuristic is competitive with the state-of-the-art heuristics from the literature.

[1]  Luís Gouveia,et al.  Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems , 2017, Transp. Sci..

[2]  Mervat Chouman,et al.  The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design , 2018, EURO J. Comput. Optim..

[3]  Dimitris C. Paraskevopoulos,et al.  A cycle-based evolutionary algorithm for the fixed-charge capacitated multi-commodity network design problem , 2016, Eur. J. Oper. Res..

[4]  Alysson M. Costa,et al.  Accelerating benders decomposition with heuristicmaster problem solutions , 2012 .

[5]  Martin W. P. Savelsbergh,et al.  Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem , 2010, INFORMS J. Comput..

[6]  Inmaculada Rodríguez Martín,et al.  A local branching heuristic for the capacitated fixed-charge network design problem , 2010, Comput. Oper. Res..

[7]  Michel Gendreau,et al.  A Simplex-Based Tabu Search Method for Capacitated Network Design , 2000, INFORMS J. Comput..

[8]  Naoto Katayama A COMBINED CAPACITY SCALING AND LOCAL BRANCHING APPROACH FOR CAPACITATED MULTI-COMMODITY NETWORK DESIGN PROBLEM , 2015 .

[9]  Andreas Klose,et al.  Algorithms for solving the single-sink fixed-charge transportation problem , 2008, Comput. Oper. Res..

[10]  Bernard Gendron,et al.  Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design , 2018, Eur. J. Oper. Res..

[11]  Juan-José Salazar-González,et al.  A local branching heuristic for the capacitated fixed-charge network design problem , 2010 .

[12]  Teodor Gabriel Crainic,et al.  Multicommodity Capacitated Network Design , 1999 .

[13]  Georg Kliewer,et al.  Relax-and-Cut for Capacitated Network Design , 2005, ESA.

[14]  Teodor Gabriel Crainic,et al.  A first multilevel cooperative algorithm for capacitated multicommodity network design , 2006, Comput. Oper. Res..

[15]  Bernard Gendron,et al.  Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-charge network design , 2014, EURO J. Comput. Optim..

[16]  Michel Gendreau,et al.  Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design , 2003, Oper. Res..

[17]  Masoud Yaghini,et al.  A hybrid simulated annealing and column generation approach for capacitated multicommodity network design , 2013, J. Oper. Res. Soc..

[18]  Bernard Gendron,et al.  Revisiting Lagrangian relaxation for network design , 2019, Discret. Appl. Math..

[19]  Antonio Frangioni,et al.  Bundle methods for sum-functions with “easy” components: applications to multicommodity network design , 2013, Mathematical Programming.

[20]  Matteo Fischetti,et al.  Benders decomposition without separability: A computational study for capacitated facility location problems , 2016, Eur. J. Oper. Res..

[21]  Antonio Frangioni,et al.  On the computational efficiency of subgradient methods: a case study with Lagrangian bounds , 2017, Mathematical Programming Computation.

[22]  Michel Gendreau,et al.  Cooperative Parallel Tabu Search for Capacitated Network Design , 2002, J. Heuristics.

[23]  Jean-Philippe Vial,et al.  Solving Large-Scale Linear Multicommodity Flow Problems with an Active Set Strategy and Proximal-ACCPM , 2006, Oper. Res..

[24]  Mervat Chouman,et al.  Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design , 2017, Transp. Sci..

[25]  Jacques Desrosiers,et al.  On the choice of explicit stabilizing terms in column generation , 2007, Discret. Appl. Math..

[26]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[27]  Meinolf Sellmann,et al.  Lagrangian Cardinality Cuts and Variable Fixing for Capacitated Network Design , 2002, ESA.

[28]  Michel Gendreau,et al.  Path Relinking, Cycle-Based Neighbourhoods and Capacitated Multicommodity Network Design , 2004, Ann. Oper. Res..

[29]  M. Chen,et al.  A capacity scaling heuristic for the multicommodity capacitated network design problem , 2009, J. Comput. Appl. Math..

[30]  J. Dongarra Performance of various computers using standard linear equations software , 1990, CARN.

[31]  Michel Gendreau,et al.  A Scatter Search Heuristic for the Fixed-Charge Capacitated Network Design Problem , 2007, Metaheuristics.

[32]  Mervat Chouman,et al.  A MIP-Tabu Search Hybrid Framework for Multicommodity Capacitated Fixed-Charge Network Design , 2010 .

[33]  Teodor Gabriel Crainic,et al.  A Slope Scaling/Lagrangean Perturbation Heuristic with Long-Term Memory for Multicommodity Capacitated Fixed-Charge Network Design , 2004, J. Heuristics.

[34]  Teodor Gabriel Crainic,et al.  Bundle-based relaxation methods for multicommodity capacitated fixed charge network design , 2001, Discret. Appl. Math..

[35]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[36]  Di Yuan,et al.  A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem , 2000, Oper. Res..

[37]  Alysson M. Costa,et al.  Benders, metric and cutset inequalities for multicommodity capacitated network design , 2009, Comput. Optim. Appl..

[38]  Teodor Gabriel Crainic,et al.  RELAXATIONS FOR MULTICOMMODITY CAPACITATED NETWORK DESIGN PROBLEMS. , 1994 .

[39]  Alper Atamtürk,et al.  Flow pack facets of the single node fixed-charge flow polytope , 2001, Oper. Res. Lett..