Multiple Change Point Detection in Structured VAR Models: the VARDetect R Package

Vector Auto-Regressive (VAR) models capture lead-lag temporal dynamics of multivariate time series data. They have been widely used in macroeconomics, financial econometrics, neuroscience and functional genomics. In many applications, the data exhibit structural changes in their autoregressive dynamics, which correspond to changes in the transition matrices of the VAR model that specify such dynamics. We present the R package VARDetect that implements two classes of algorithms to detect multiple change points in piecewise stationary VAR models. The first exhibits sublinear computational complexity in the number of time points and is best suited for structured sparse models, while the second exhibits linear time complexity and is designed for models whose transition matrices are assumed to have a low rank plus sparse decomposition. The package also has functions to generate data from the various variants of VAR models discussed, which is useful in simulation studies, as well as to visualize the results through network layouts.

[1]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[2]  A. Aue,et al.  Break detection in the covariance structure of multivariate time series models , 2009, 0911.3796.

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  Piotr Fryzlewicz,et al.  Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.

[5]  David S. Matteson,et al.  A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data , 2013, 1306.4933.

[6]  M. Lavielle,et al.  Detection of multiple change-points in multivariate time series , 2006 .

[7]  P. Naveau,et al.  Inferring change points and nonlinear trends in multivariate time series: Application to West African monsoon onset timings estimation , 2011 .

[8]  Achim Zeileis,et al.  Strucchange: An R package for testing for structural change in linear regression models , 2002 .

[9]  Mark W. Watson,et al.  Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics , 2016 .

[10]  Gregory C. Reinsel,et al.  Reduced rank models for multiple time series , 1986 .

[11]  Haeran Cho,et al.  mosum: Moving Sum Based Procedures for Changes in the Mean , 2018 .

[12]  George Michailidis,et al.  Low Rank and Structured Modeling of High-Dimensional Vector Autoregressions , 2018, IEEE Transactions on Signal Processing.

[13]  Michèle Basseville,et al.  Detecting changes in signals and systems - A survey , 1988, Autom..

[14]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[15]  P. Fearnhead,et al.  Optimal detection of changepoints with a linear computational cost , 2011, 1101.1438.

[16]  G. Michailidis,et al.  Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues. , 2013, Mathematical biosciences.

[17]  Alessandro Rinaldo,et al.  Localizing Changes in High-Dimensional Vector Autoregressive Processes , 2019, 1909.06359.

[18]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[19]  Karl J. Friston,et al.  Granger causality revisited , 2014, NeuroImage.

[20]  Ali Shojaie,et al.  Network granger causality with inherent grouping structure , 2012, J. Mach. Learn. Res..

[21]  J. Bai,et al.  Estimation of a Change Point in Multiple Regression Models , 1997, Review of Economics and Statistics.

[22]  Idris A. Eckley,et al.  changepoint: An R Package for Changepoint Analysis , 2014 .

[23]  Dengsheng Wu,et al.  Change point detection for subprime crisis in American banking: From the perspective of risk dependence , 2015 .

[24]  George Michailidis,et al.  Change point estimation in high dimensional Markov random‐field models , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[25]  Martin A. Lindquist,et al.  Detecting functional connectivity change points for single-subject fMRI data , 2013, Front. Comput. Neurosci..

[26]  Candice T. Stanfield,et al.  The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals , 2017, Front. Neurosci..

[27]  J. Bai,et al.  Least squares estimation of a shift in linear processes , 1994 .

[28]  A. Munk,et al.  Multiscale change point inference , 2013, 1301.7212.

[29]  George Michailidis,et al.  Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models , 2017, J. Mach. Learn. Res..

[30]  Piotr Fryzlewicz,et al.  Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.

[31]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[32]  Ali Shojaie,et al.  Joint Structural Break Detection and Parameter Estimation in High-Dimensional Nonstationary VAR Models , 2017, Journal of the American Statistical Association.

[33]  L. Kilian,et al.  Structural Vector Autoregressive Analysis , 2017 .

[34]  Z. Harchaoui,et al.  Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .

[35]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[36]  George Michailidis,et al.  Multiple Change Points Detection in Low Rank and Sparse High Dimensional Vector Autoregressive Models , 2020, IEEE Transactions on Signal Processing.

[37]  N. Vayatis,et al.  Selective review of offline change point detection methods , 2019 .

[38]  A. Munk,et al.  FDR-Control in Multiscale Change-point Segmentation , 2014, 1412.5844.