9 – Using solid-liquid phase change materials (PCMs) in thermal energy storage systems

This chapter presents the principles of solid-liquid phase change materials (PCMs). The classifications of PCMs are discussed along with their advantages and disadvantages. PCMs can have problems in regards to incongruent melting, phase separation, subcooling and low thermal conductivity. Literature in relation to overcoming these issues has been reviewed and is summarised. Methods to measure the thermophysical properties of PCMs are presented. A list of key PCMs is given along with a comparison of their physical and technical properties. The future trend of PCM development is being conducted in conjunction with the application.

[1]  P. G. Grodzka,et al.  Space thermal control development , 1971 .

[2]  R. Siegel Solidification of low conductivity material containing dispersed high conductivity particles , 1977 .

[3]  W. Humphries,et al.  A design handbook for phase change thermal control and energy storage devices. [selected paraffins] , 1977 .

[4]  Bo Carlsson,et al.  An incongruent heat-of-fusion system—CaCl2·6H2O—Made congruent through modification of the chemical composition of the system , 1979 .

[5]  M. Telkes CHAPTER 11 – THERMAL STORAGE IN SALT - HYDRATES , 1980 .

[6]  G. Lane,et al.  Low temperature heat storage with phase change materials , 1980 .

[7]  A. Abhat,et al.  Heat-of-Fusion Storage Systems for Solar Heating Applications , 1981 .

[8]  Fan-bill B. Cheung,et al.  Complex Freezing-Melting Interfaces in Fluid Flow , 1983 .

[9]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .

[10]  C. E. Birchenall,et al.  New eutectic alloys and their heats of transformation , 1985 .

[11]  P. Padmanabhan,et al.  Outward phase change in a cylindrical annulus with axial fins on the inner tube , 1986 .

[12]  Yoshiyuki Abe,et al.  Investigation of latent heat-thermal energy storage materials. IV. Thermoanalytical evaluation of binary eutectic mixtures of NaOH with LiOH or KOH , 1987 .

[13]  Yoshiyuki Abe,et al.  Investigation of latent heat thermal energy storage materials: V. thermoanalytical evaluation of binary eutectic mixtures and compounds of NAOH with NaNO3 OR NaNO2 , 1988 .

[14]  S. D. Kim,et al.  Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium , 1990 .

[15]  Matsuzawa Kazuyuki,et al.  Fundamental research on the supercooling phenomenon on heat transfer surfaces—investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water , 1990 .

[16]  V. H. Morcos Investigation of a latent heat thermal energy storage system , 1990 .

[17]  T. Akiyama,et al.  Storage and release of heat in a single spherical capsule containing phase-change material with a high melting point , 1991 .

[18]  G. Lane,et al.  Phase change materials for energy storage nucleation to prevent supercooling , 1992 .

[19]  C. J. Hoogendoorn,et al.  Performance and modelling of latent heat stores , 1992 .

[20]  M. Kenisarin Short-term storage of solar energy. 1: Low temperature phase-change materials , 1993 .

[21]  M. Lacroix Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube , 1993 .

[22]  S. D. Kim,et al.  Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point , 1995 .

[23]  S. D. Kim,et al.  Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage , 1996 .

[24]  Gheorghe Dumitrascu,et al.  The correlation between the number of fins and the discharge time for a finned heat pipe latent heat storage system , 1996 .

[25]  Jamil A. Khan,et al.  ENHANCEMENT OF HEAT TRANSFER BY INSERTING A METAL MATRIX INTO A PHASE CHANGE MATERIAL , 1996 .

[26]  L. Chow,et al.  Thermal conductivity enhancement for phase change storage media , 1989 .

[27]  R. Velraj,et al.  Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit , 1997 .

[28]  A. Oliva,et al.  Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction , 1998 .

[29]  Zhang Yinping,et al.  A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials , 1999 .

[30]  R. Velraj,et al.  Heat transfer enhancement in a latent heat storage system , 1999 .

[31]  Gheorghe Dumitrascu,et al.  Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system , 1999 .

[32]  J. Fukai,et al.  Thermal conductivity enhancement of energy storage media using carbon fibers , 2000 .

[33]  A. M. Gasanaliev,et al.  Heat-accumulating properties of melts , 2000 .

[34]  K. Ismail,et al.  Parametric study of solidification of PCM around a cylinder for ice-bank applications , 2001 .

[35]  X. Py,et al.  Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material , 2001 .

[36]  K. Ismail,et al.  Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder , 2001 .

[37]  M. Dimaano,et al.  Performance investigation of the capric and lauric acid mixture as latent heat energy storage for a cooling system , 2002 .

[38]  J. Fukai,et al.  Effect of carbon-fiber brushes on conductive heat transfer in phase change materials , 2002 .

[39]  Luisa F. Cabeza,et al.  Heat transfer enhancement in water when used as PCM in thermal energy storage , 2002 .

[40]  Graeme Maidment,et al.  A review of research concerning the use of PCMS in air conditioning and refrigeration engineering , 2002 .

[41]  T. Akiyama,et al.  Development of PCM for Recovering High Temperature Waste Heat and Utilization for Producing Hydrogen by Reforming Reaction of Methane , 2002 .

[42]  A. Sari,et al.  Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes , 2002 .

[43]  Bo He,et al.  Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation , 2002 .

[44]  J. Fukai,et al.  Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates , 2003 .

[45]  Juan Pablo Trelles,et al.  Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling , 2003 .

[46]  K. Nagano,et al.  Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems , 2003 .

[47]  L. Cabeza,et al.  Determination of enthalpy?temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties , 2003 .

[48]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[49]  Fredrik Setterwall,et al.  Phase transition temperature ranges and storage density of paraffin wax phase change materials , 2004 .

[50]  H. Hong,et al.  Accuracy improvement of T-history method for measuring heat of fusion of various materials , 2004 .

[51]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[52]  Wasim Saman,et al.  Numerical analysis of a PCM thermal storage system with varying wall temperature , 2005 .

[53]  Luisa F. Cabeza,et al.  Improvement of a thermal energy storage using plates with paraffin–graphite composite , 2005 .

[54]  Hiki Hong,et al.  A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method , 2006 .

[55]  Jose M. Marin,et al.  Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials , 2006 .

[56]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[57]  R. Pitz-Paal,et al.  Cascaded latent heat storage for parabolic trough solar power plants , 2007 .

[58]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[59]  Wolf-Dieter Steinmann,et al.  Latent Heat Storage for Solar Steam Systems , 2008 .

[60]  Afif Hasan,et al.  Modeling of greenhouse with PCM energy storage , 2008 .

[61]  X. Py,et al.  Highly conductive composites made of phase change materials and graphite for thermal storage , 2008 .

[62]  Huibin Yin,et al.  Experimental research on heat transfer mechanism of heat sink with composite phase change materials , 2008 .

[63]  L. Cabeza,et al.  Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins , 2008 .

[64]  Luisa F. Cabeza,et al.  Determination of the enthalpy of PCM as a function of temperature using a heat‐flux DSC—A study of different measurement procedures and their accuracy , 2008 .

[65]  Changzhong Chen,et al.  Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials , 2008 .

[66]  Harald Mehling,et al.  Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods , 2009 .

[67]  Jean-Pierre Bédécarrats,et al.  Study of a phase change energy storage using spherical capsules. Part I: Experimental results , 2009 .

[68]  B. Carlsson Phase change behaviour of some latent heat storage media based on calcium chloride hexahydrate , 2009 .

[69]  H. Mehling,et al.  Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience , 2009 .

[70]  Jinyue Yan,et al.  Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride , 2009 .

[71]  L. Drzal,et al.  High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets , 2009 .

[72]  T. Bauer,et al.  SODIUM NITRATE FOR HIGH TEMPERATURE LATENT HEAT STORAGE , 2009 .

[73]  Xiaoxi Yang,et al.  Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials , 2009 .

[74]  Mervyn Smyth,et al.  A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins , 2009 .

[75]  Hazim B. Awbi,et al.  Performance of phase change material boards under natural convection , 2009 .

[76]  Phase change materials formed by uv curable epoxy matrix and Fischer-Tropsch paraffin wax , 2009 .

[77]  T. L. Bergman,et al.  High temperature latent heat thermal energy storage using heat pipes , 2010 .

[78]  Cruz Meneses-Fabian,et al.  A differential formulation of the T-History calorimetric method , 2010 .

[79]  Viktoria Martin,et al.  Direct contact PCM-water cold storage , 2010 .

[80]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[81]  Francis Agyenim,et al.  Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array , 2010 .

[82]  Jun Wang,et al.  Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties , 2010 .

[83]  Harald Mehling,et al.  New method to evaluate the heat storage density in latent heat storage for arbitrary temperature ranges , 2010 .

[84]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[85]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[86]  Ibrahim Dincer,et al.  Energy Storage Systems , 2010 .

[87]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[88]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[89]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[90]  T. L. Bergman,et al.  Enhancement of latent heat energy storage using embedded heat pipes , 2011 .

[91]  Luisa F. Cabeza,et al.  New equipment for testing steady and transient thermal performance of multilayered building envelope , 2011 .

[92]  Mónica Delgado,et al.  Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications , 2012 .

[93]  Luisa F. Cabeza,et al.  New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials , 2012 .

[94]  F. Bruno,et al.  Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems , 2012 .

[95]  Wasim Saman,et al.  Development of a novel refrigeration system for refrigerated trucks incorporating phase change material , 2012 .

[96]  Martin Belusko,et al.  Experimental investigation of tubes in a phase change thermal energy storage system , 2012 .

[97]  Martin Belusko,et al.  Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system , 2012 .

[98]  Luisa F. Cabeza,et al.  Review on phase change materials (PCMs) for cold thermal energy storage applications , 2012 .

[99]  Per Heiselberg,et al.  Review of thermal energy storage technologies based on PCM application in buildings , 2013 .

[100]  Luisa F. Cabeza,et al.  Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale , 2013 .

[101]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[102]  Alparslan Oztekin,et al.  Encapsulated phase change materials for energy storage – Characterization by calorimetry , 2013 .

[103]  L. Cabeza,et al.  Review of the T-history method to determine thermophysical properties of phase change materials (PCM) , 2013 .

[104]  L. Cabeza,et al.  Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM) , 2013 .

[105]  Doerte Laing,et al.  Development of high temperature phase-change-material storages , 2013 .

[106]  L. Cabeza,et al.  Intercomparative tests on phase change materials characterisation with differential scanning calorimeter , 2013 .

[107]  C. Doetsch,et al.  State of the art on phase change material slurries , 2013 .

[108]  Martin Belusko,et al.  Experimental investigation of dynamic melting in a tube-in-tank PCM system , 2013 .

[109]  Saffa Riffat,et al.  A review of PCM technology for thermal energy storage in the built environment: Part I , 2013 .

[110]  Gang Li,et al.  Review of cold storage materials for subzero applications , 2013 .

[111]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[112]  Luisa F. Cabeza,et al.  Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials , 2013 .

[113]  Nicholas R. Jankowski,et al.  A review of phase change materials for vehicle component thermal buffering , 2014 .

[114]  Saffa Riffat,et al.  Phase change material developments: a review , 2015 .