Asynchronous Byzantine Systems: From Multivalued to Binary Consensus with t < n/3, O(n 2 ) Messages, O(1) Time, and no Signature

This paper presents a new algorithm that reduces multivalued consensus to binary consensus in an asynchronous message-passing system made up of n processes where up to t may commit Byzantine failures. This algorithm has the following noteworthy properties: it assumes t < n/3 (and is consequently optimal from a resilience point of view), uses O(n 2) messages, has a constant time complexity, and does not use signatures. The design of this reduction algorithm relies on two new all-to-all communication abstractions. The first one allows the non-faulty processes to reduce the number of proposed values to c, where c is a small constant. The second communication abstraction allows each non-faulty process to compute a set of (proposed) values such that, if the set of a non-faulty process contains a single value, then this value belongs to the set of any non-faulty process. Both communication abstractions have an O(n 2) message complexity and a constant time complexity. The reduction of multivalued Byzantine consensus to binary Byzantine consensus is then a simple sequential use of these communication abstractions. To the best of our knowledge, this is the first asynchronous message-passing algorithm that reduces multivalued consensus to binary consensus with O(n 2) messages and constant time complexity (measured with the longest causal chain of messages) in the presence of up to t < n/3 Byzantine processes, and without using cryptography techniques. Moreover, this reduction algorithm tolerates message re-ordering by Byzantine processes. Une reduction du consensus multivalue au consensus binaire en presence d'asynchronisme, de t < n/3 processus byzantins, avec un temps constant, O(n 2) messages, et pas de signatures Resume : Cet article presente un algorithme reparti qui, dans un systeme asynchrone de n processus qui communiquent par passage de messages, et qui comprend jusqu'a t processus byzantins, ramene le probleme du consensus multivalue au probleme du consensus binaire. Cette reduction est optimale par rapport a t (t < n/3), requiert un temps constant et O(n 2) messages, et n'utilise aucun element cryptographique (i.e., pas de signatures). Elle considere donc un adversaire donc la la puissance de calcul peut etre illimitee.

[1]  Marcos K. Aguilera,et al.  Abortable and query-abortable objects and their efficient implementation , 2007, PODC '07.

[2]  Michel Raynal,et al.  Concurrent Programming: Algorithms, Principles, and Foundations , 2012, Springer Berlin Heidelberg.

[3]  Achour Mostéfaoui,et al.  Signature-Free Broadcast-Based Intrusion Tolerance: Never Decide a Byzantine Value , 2010, OPODIS.

[4]  Sam Toueg,et al.  Asynchronous consensus and broadcast protocols , 1985, JACM.

[5]  Miguel Correia,et al.  From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without Signatures , 2006, Comput. J..

[6]  Arpita Patra,et al.  Error-free Multi-valued Broadcast and Byzantine Agreement with Optimal Communication Complexity , 2011, OPODIS.

[7]  Nitin H. Vaidya,et al.  Error-free multi-valued consensus with byzantine failures , 2011, PODC '11.

[8]  Sam Toueg,et al.  On deterministic abortable objects , 2013, PODC '13.

[9]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[10]  Michel Raynal,et al.  Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems , 2010, Synthesis Lectures on Distributed Computing Theory.

[11]  Michael Ben-Or,et al.  Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols , 1983, PODC '83.

[12]  Achour Mostéfaoui,et al.  From Binary Consensus to Multivalued Consensus in asynchronous message-passing systems , 2000, Inf. Process. Lett..

[13]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[14]  Roy Friedman,et al.  $\diamondsuit {\mathcal P}_{mute}$-based Consensus for Asynchronous Byzantine Systems , 2005, Parallel Process. Lett..

[15]  Achour Mostéfaoui,et al.  Signature-free asynchronous byzantine consensus with t < n/3 and o(n2) messages , 2014, PODC.

[16]  FriedmanRoy,et al.  Simple and Efficient Oracle-Based Consensus Protocols for Asynchronous Byzantine Systems , 2005 .

[17]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[18]  Roy Friedman,et al.  Asynchronous Agreement and Its Relation with Error-Correcting Codes , 2007, IEEE Transactions on Computers.

[19]  Achour Mostéfaoui,et al.  Conditions on input vectors for consensus solvability in asynchronous distributed systems , 2003, J. ACM.

[20]  Achour Mostéfaoui,et al.  Conditions on input vectors for consensus solvability in asynchronous distributed systems , 2001, STOC '01.

[21]  Jean-Philippe Martin,et al.  Fast Byzantine Consensus , 2006, IEEE Trans. Dependable Secur. Comput..

[22]  Michael O. Rabin,et al.  Randomized byzantine generals , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Louise E. Moser,et al.  Byzantine Fault Detectors for Solving Consensus , 2003, Comput. J..

[24]  Victor Shoup,et al.  Secure and Efficient Asynchronous Broadcast Protocols , 2001, CRYPTO.

[25]  Roy Friedman,et al.  Simple and Efficient Oracle-Based Consensus Protocols for Asynchronous Byzantine Systems , 2005, IEEE Trans. Dependable Secur. Comput..

[26]  André Schiper,et al.  On the Reduction of Atomic Broadcast to Consensus with Byzantine Faults , 2011, 2011 IEEE 30th International Symposium on Reliable Distributed Systems.

[27]  Brian A. Coan,et al.  Extending Binary Byzantine Agreement to Multivalued Byzantine Agreement , 1984, Inf. Process. Lett..

[28]  Nancy A. Lynch,et al.  Consensus in the presence of partial synchrony , 1988, JACM.

[29]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[30]  Kenneth J. Perry Randomized Byzantine Agreement , 1985, IEEE Transactions on Software Engineering.

[31]  Sam Toueg,et al.  Randomized Byzantine Agreements , 1984, PODC '84.

[32]  Jared Saia,et al.  Breaking the O(n2) bit barrier: scalable byzantine agreement with an adaptive adversary , 2010, PODC.

[33]  Jean-Philippe Martin,et al.  Fast Byzantine Consensus , 2006, IEEE Transactions on Dependable and Secure Computing.

[34]  Jared Saia,et al.  Breaking the O(n2) bit barrier: Scalable byzantine agreement with an adaptive adversary , 2010, JACM.

[35]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[36]  Gabriel Bracha,et al.  Asynchronous Byzantine Agreement Protocols , 1987, Inf. Comput..

[37]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[38]  Michael K. Reiter,et al.  On k-set consensus problems in asynchronous systems , 1999, PODC '99.