Characterizing Uncertainty in Digital Elevation Models

Many ecological modeling applications rely upon characterizations of the earth’s surface. In some instances, the actual elevations are important (e.g., see Nisbet and Botkin 1993; de Swart et al. 1994; Liebhold et al. 1994). In others, secondary terrain attributes such as slope and aspect are also critical for the application (e.g., see Huber and Casler 1990; Nemani et al. 1993; Austin et al. 1996; Zhu et al. 1996; Russel et al. 1997). The term digital elevation model (DEM) refers to a variety of digital forms that characterize some portion of the earth’s topography. These are used as proxies for the actual terrain surface in environmental modeling applications. The process of DEM production is one of abstraction, and is subject to error; therefore, a DEM does not perfectly match the real-world terrain it represents. The precise degree of this mismatch at every point is unknown, giving rise to uncertainty about the relationship between data and actual terrain.

[1]  Bor-Wen Tsai,et al.  The Effect of DEM Resolution on Slope and Aspect Mapping , 1991 .

[2]  M. Delibes,et al.  Use of Non-Wildlife Passages Across a High Speed Railway by Terrestrial Vertebrates , 1996 .

[3]  A-Xing Zhu,et al.  Automated soil inference under fuzzy logic , 1996 .

[4]  Keith Beven,et al.  Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework , 1997 .

[5]  William J. Ripple,et al.  Comparison of 7.5-minute and 1-degree digital elevation models , 1990 .

[6]  T. P. Huber,et al.  Initial analysis of Landsat TM data for elk habitat mapping , 1990 .

[7]  Michael F. Goodchild,et al.  Geographical data modeling , 1992 .

[8]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[9]  G. Robinson,et al.  THE ACCURACY OF DIGITAL ELEVATION MODELS DERIVED FROM DIGITISED CONTOUR DATA , 1994 .

[10]  J. Chorowicz,et al.  Description of terrain as a fractal surface, and application to digital elevation model quality assessment , 1991 .

[11]  N. Lam Spatial Interpolation Methods: A Review , 1983 .

[12]  Simon Bennett Innovations In GIS 1 , 1995 .

[13]  Ron Johnston,et al.  , Geographical Information Systems Volume 1: Principles and Technical Issues , 1999 .

[14]  Michael P. O'Neill,et al.  The Role of GIS in Selecting Sites for Riparian Restoration Based on Hydrology and Land Use , 1997 .

[15]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[16]  L. Polidori,et al.  Comparison of bilinear and Brownian interpolation for digital elevation models , 1993 .

[17]  P. J. Campion,et al.  Error and Uncertainty , 1973 .

[18]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[19]  Andrew M. Liebhold,et al.  Landscape characterization of forest susceptibility to gypsy moth defoliation. , 1994 .

[20]  Gerard B. M. Heuvelink,et al.  Propagation of errors in spatial modelling with GIS , 1989, Int. J. Geogr. Inf. Sci..

[21]  P. Bolstad,et al.  An evaluation of DEM accuracy: elevation, slope, and aspect , 1994 .

[22]  P. Fisher First experiments in viewshed uncertainty : the accuracy of the viewshed area , 1991 .

[23]  D. Unwin Geographical information systems and the problem of 'error and uncertainty' , 1995 .

[24]  Jay Gao,et al.  Resolution and Accuracy of Terrain Representation by Grid DEMs at a Micro-Scale , 1997, Int. J. Geogr. Inf. Sci..

[25]  S. Guptill,et al.  Elements of Spatial Data Quality , 1995 .

[26]  Aat Barendregt,et al.  Experimental evaluation of realized niche models for predicting responses of plant species to a change in environmental conditions , 1994 .

[27]  J. Garbrecht,et al.  Note on the use of USGS level 1 7.5-minute DEM coverages for landscape drainage analyses , 1995 .

[28]  Michael F. Goodchild,et al.  CHAPTER FOUR – Attribute accuracy , 1995 .

[29]  M. Goodchild,et al.  Environmental Modeling with GIS , 1994 .

[30]  G. Petrie,et al.  Terrain Modelling in Surveying and Civil Engineering , 1991 .

[31]  David J. Maguire,et al.  Geographical information systems : principles and applications , 1991 .

[32]  William B. Critchfield,et al.  The distribution of forest trees in California , 1972 .

[33]  Michael F. Goodchild,et al.  Visualizing spatial data uncertainty using animation , 1997 .

[34]  Stan Openshaw,et al.  Learning to live with errors in spatial databases , 1989 .

[35]  Mark P. Kumler An Intensive Comparison of Triangulated Irregular Networks (TINs) and Digital Elevation Models (DEMs) , 1994 .

[36]  Michael F. Goodchild,et al.  The accuracy of spatial databases , 1991 .

[37]  Edzer Pebesma,et al.  GSTAT: a program for geostatistical modelling, prediction and simulation , 1998 .

[38]  P. Burrough Principles of Geographical Information Systems for Land Resources Assessment , 1986 .

[39]  Des B. A. Thompson,et al.  Predicting the spatial distribution of buzzard Buteo buteo nesting areas using a geographical information system and remote sensing , 1996 .

[40]  Margaret A. Oliver,et al.  Geostatistics in physical geography. Part II. Applications. , 1989 .

[41]  P. Fisher,et al.  Modeling the effect of data errors on feature extraction from digital elevation models , 1992 .