An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations

A Microsoft Excel spreadsheet has been programmed to assist with classification of chemical analyses of orthorhombic and monoclinic amphiboles following the 2012 nomenclature recommended by the International Mineralogical Association. The spreadsheet is intended for use only with compositional data (wt% oxides and halogens, rather than atomic proportions) and provides options for the estimation of Fe3+/ΣFe and Mn3+/ΣMn ratios and OH content. Various cation normalization schemes can be automatically or manually selected. For each analysis, the output includes the group, subgroup (or B-occupancy for the oxo-amphiboles), and species name including any mandatory chemical prefixes, along with a formula based on 24 anions. The formula results can be exported in a form suitable for the AMPH2012 program. Prefixes related to space groups (proto-) and suffixes (-P21/m) are not assigned in the spreadsheet. Large data sets (up to 200 analyses at a time) can be accommodated by the spreadsheet, which is accompanied by results calculated for more than 650 amphibole analyses taken from the literature. .Display Omitted A spreadsheet to classify amphiboles using the IMA 2012 nomenclature is presented.Output includes group, subgroup, species name and formula.Up to 200 analyses can be classified.Results for more than 650 analyses are tabulated.

[1]  I. Bonev,et al.  Manganoan amphiboles from the skarn-ore Pb-Zn deposits in the Madan district, Central Rhodopes, Bulgaria , 2007 .

[2]  Kei Sato,et al.  The stability and origin of sodicgedrite in ultrahigh-temperature Mg-Al granulites: a case study from the Gondwana suture in southern India , 2008 .

[3]  P. Ashley An unusual manganese silicate occurrence at the Hoskins mine, Grenfell district, New South Wales , 1986 .

[4]  Petrology of Mg-Mn amphibole-bearing assemblages in manganese silicate rocks of the Sausar Group, India , 1988 .

[5]  Giovanni Ferraris,et al.  NOMENCLATURE OF AMPHIBOLES: ADDITIONS AND REVISIONS TO THE INTERNATIONAL MINERALOGICAL ASSOCIATION’S 1997 RECOMMENDATIONS , 2003 .

[6]  G. Toscani,et al.  How to name amphiboles after the IMA2012 report: rules of thumb and a new PC program for monoclinic amphiboles , 2012 .

[7]  D. Gnrcr,et al.  A new hyper-calcic amphibole with Ca at the A site : Fluor-cannilloite from Pargas , Finland , 2007 .

[8]  J. Schumacher Metamorphic Amphiboles: Composition and Coexistence , 2007 .

[9]  J. D. Robertson,et al.  Crystal chemistry of Fe3+ and H+ in mantle kaersutite: Implications for mantle metasomatism , 1993 .

[10]  W. Lustenhouwer,et al.  Subsilicic Sodium Gedrite in Leptite of Quartz Keratophyric Origin, Nordmark (Sweden) , 1996, Mineralogical magazine.

[11]  P. Buseck,et al.  Crystal structure of protoanthophyllite: A new mineral from the Takase ultramafic complex, Japan , 2003 .

[12]  F. Mazdab THE DIVERSITY AND OCCURRENCE OF POTASSIUM-DOMINANT AMPHIBOLES , 2003 .

[13]  F. Hawthorne,et al.  THE CRYSTAL CHEMISTRY OF Al-RICH AMPHIBOLES: SADANAGAITE AND POTASSIC-FERRISADANAGAITE , 2008 .

[14]  F. Nestola,et al.  Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite , 2010 .

[15]  G. V. Gibbs,et al.  A crystal chemical study of protoanthophyllite: orthoamphiboles with the protoamphibole structure , 1998 .

[16]  B. Leake,et al.  Winchite re-discovered from the type locality in India , 1986, Mineralogical Magazine.

[17]  M. Cosca,et al.  Complete chemical analyses of metamorphic hornblendes: implications for normalizations, calculated H2O activities, and thermobarometry , 1991 .

[18]  Peter A. Williams,et al.  IMA Commission on New Minerals, Nomenclature and Classification (CNMNC), Newsletter 15. New minerals and nomenclature modifications approved in 2012 and 2013. , 2012 .

[19]  Canada.,et al.  A new anhydrous amphibole from the Hoskins mine , Grenfell , New South Wales , Australia : Description and crystal structure of ungarettiite , NaNar ( Mnl + Mn 3 + ) Si 8 O 22 O 2 , 2007 .

[20]  Annxo H. DavrNr Hydrothermal orthoamphibole-bearing assemblages from the GAsborn area , West Bergslagen , central Sweden , 2007 .

[21]  W. Ernst Paragenesis and thermobarometry of Ca-amphiboles in the Barcroft granodioritic pluton, central White Mountains, eastern California , 2002 .

[22]  Bryan R. Bandli,et al.  Site occupancy in richterite-winchite from Libby, Montana, USA, by FTIR spectroscopy , 2007, Mineralogical Magazine.

[23]  R. Oberti,et al.  Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member , 2001 .

[24]  F. Cámara,et al.  Lithium in amphiboles detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles , 2003 .

[25]  Frank C. Hawthorne,et al.  Classification of the Amphiboles , 2007 .

[26]  A. Zanetti,et al.  The effect of oxo-component on the high-pressure behavior of amphiboles , 2010 .

[27]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[28]  F. Hawthorne,et al.  Amphiboles from the Kola Superdeep Borehole: Fe3+ contents from crystal-chemical analysis and Mössbauer spectroscopy , 2007, Mineralogical Magazine.

[29]  Peter A. Williams,et al.  IMA Commission on New Minerals, Nomenclature and Classification (CNMNC), Newsletter 11. New minerals and nomenclature modifications approved in 2011. , 2011 .

[30]  Z. Homonnay,et al.  Oxo-magnesio-hastingsite, NaCa2(Mg2Fe33+)(Al2Si6)O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern Tanzania , 2013, Mineralogical Magazine.

[31]  H. Bojar,et al.  Fluoro-magnesiohastingsite from Dealul Uroi (Hunedoara county, Romania) Mineral data and crystal structure of a new amphibole end-member , 2006 .

[32]  F. Hawthorne,et al.  The behaviour of Ti in amphiboles; I, Four- and six-coordinate Ti in richterite , 1992 .

[33]  F. Hatert,et al.  THE IMA–CNMNC DOMINANT-CONSTITUENT RULE REVISITED AND EXTENDED , 2008 .

[34]  Shohei Saito,et al.  Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan , 2012 .

[35]  R. Tessadri,et al.  A BASIC COMPUTER PROGRAM TO DETERMINE THE NAME OF AN AMPHIBOLE FROM AN ELECTRON MICROPROBE ANALYSIS , 1982 .

[36]  M. Bown,et al.  Diffraction and M�ssbauer Studies of Minerals from Lunar Soils and Rocks , 1970, Science.

[37]  G. Pedrazzi,et al.  Synthesis, crystal structure and crystal chemistry of ferri-clinoholmquistite, □Li2Mg3Fe3+2Si8O22(OH)2 , 2004 .

[38]  F. Cámara,et al.  The crystal-chemistry of holmquistites: Ferroholmquistite from Greenbushes (Western Australia) and hints for compositional constraints in BLi amphiboles , 2005 .

[39]  C. McCammon,et al.  Ferric/ferrous iron ratios in sodic amphiboles: Mössbauer analysis, stoichiometry-based model calculations and the high-resolution microanalytical flank method , 2000 .

[40]  W. Lamb,et al.  Determination of Fe3+/Fe using the electron microprobe: A calibration for amphiboles , 2012 .

[41]  L. Gnrrpru Crystal chemistry of two coexisting K-richterites from St. Marcel (Val d'Aosta, Italy) , 1986 .

[42]  T. Andersen,et al.  Late-magmatic mineral assemblages with siderite and zirconian pyroxene and amphibole in the anorogenic Mt Gibraltar microsyenite, New South Wales, Australia, and their petrological implications , 2012 .

[43]  L. Ottolini,et al.  Ferripedrizite, a new monoclinic BLi amphibole end-member from the Eastern Pedriza Massif, Sierra de Guadarrama, Spain, and a restatement of the nomenclature of Mg-Fe-Mn-Li amphiboles , 2002 .

[44]  J. A. Norberg,et al.  Reference Samples for Electron Microprobe Analysis , 1980 .

[45]  G. Pedrazzi,et al.  Synthesis , crystal structure and crystal chemistry of ferri-clinoholmquistite , h Li 2 Mg 3 Fe 3 + 2 Si 8 O 22 ( OH ) 2 , 2022 .

[46]  E. Whittaker The crystal chemistry of the amphiboles , 1960 .

[47]  F. Tornos,et al.  Ferri-clinoholmquistite, Li 2 (Fe (super 2+) ,Mg) 3 Fe (super 3+) 2 Si 8 O 22 (OH) 2 , a new B Li clinoamphibole from the Pedriza Massif, Sierra de Guadarrama, Spanish Central System , 1998 .

[48]  B. Leake,et al.  Nomenclature of Amphiboles , 1978, Mineralogical Magazine.

[49]  B. Leake,et al.  The anhydrous amphibole ungarettiite from the Woods mine, New South Wales, australia , 2002 .

[50]  M. Dyar,et al.  The LaPaz Icefield 04840 meteorite : Mineralogy, metamorphism, and origin of an amphibole-and biotite-bearing R chondrite , 2008 .

[51]  G. Robinson,et al.  FLUOROPARGASITE, A NEW MEMBER OF THE CALCIC AMPHIBOLES FROM EDENVILLE, ORANGE COUNTY, NEW YORK , 2005 .

[52]  R. J. Floran,et al.  A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions , 1978 .

[53]  N. N. Kononkova,et al.  Problems of the Stoichiometry and Thermobarometry of Magmatic Amphiboles: An Example of Hornblende from the Andesites of Bezymyannyi Volcano, Eastern Kamchatka , 2002 .

[54]  N. Rotiroti,et al.  The high-pressure behavior of orthorhombic amphiboles , 2011 .

[55]  M. Ross,et al.  Gedrites: Crystal structures and intracrystalline cation distributions , 1970 .

[56]  W. Lustenhouwer,et al.  Manganese-rich calcic amphiboles of the tremolite-ferro-actinolite series , 1992, Mineralogical Magazine.

[57]  R. Miyawaki,et al.  Magnesiosadanagaite, a new member of the amphibole group from Kasuga-mura, Gifu Prefecture, central Japan , 2004 .

[58]  T. Armbruster,et al.  Hennomartinite and kornite, two new Mn3+ rich silicates from the Wessels Mine, Kalahari, South Africa , 1993 .

[59]  Fn-tNx C. HawrnoRNEr,et al.  Li: An important component in igneous alkali amphiboles , 1993 .

[60]  F. Hawthorne,et al.  Fluoro-aluminoleakeite, NaNa2(Mg2Al2Li)Si8O22F2, a newmineral of the amphibole group from Norra Kärr, Sweden: description and crystal structure , 2009, Mineralogical Magazine.

[61]  F. Hawthorne,et al.  Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire; a crystal-chemical study , 1996 .

[62]  M. Clynne,et al.  Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen Volcanic Center, California , 2012 .

[63]  F. Hawthorne,et al.  ON THE CLASSIFICATION OF AMPHIBOLES , 2006 .

[64]  J. Valley,et al.  Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions , 1982 .

[65]  John M. Hughes,et al.  FLUORO-POTASSICHASTINGSITE FROM THE GREENWOOD MINE, ORANGE COUNTY, NEW YORK: A NEW END-MEMBER CALCIC AMPHIBOLE , 2009 .

[66]  B. Leake,et al.  AMPH-IMA04: a revised Hypercard program to determine the name of an amphibole from chemical analyses according to the 2004 International Mineralogical Association scheme , 2004, Mineralogical Magazine.

[67]  K. Tait,et al.  Al–Mg DISORDER IN A GEM-QUALITY PARGASITE FROM BAFFIN ISLAND, NUNAVUT, CANADA , 2001 .

[68]  P. Spry,et al.  CORONAS, SYMPLECTITIC TEXTURES, AND REACTIONS INVOLVING ALUMINOUS MINERALS IN GEDRITE - CORDIERITE - GARNET GNEISS FROM EVERGREEN, FRONT RANGE, COLORADO , 2006 .

[69]  C. Klein Cummingtonite-grunerite series: a chemical, optical and x-ray study , 1964 .

[70]  F. Hawthorne,et al.  Fine structure of infrared OH-stretching bands in natural and heat-treated amphiboles of the tremolite-ferro-actinolite series , 2002 .

[71]  I. Kubovics,et al.  Mössbauer study of amphiboles originated from the Carpathian region , 1990 .

[72]  J. H. Stout Phase Petrology and Mineral Chemistry of Coexisting Amphiboles from Telemark, Norway , 1972 .

[73]  B. Mason Manganese silicate minerals from broken hill, New South Wales , 1973 .

[74]  F. Hawthorne,et al.  CRYSTAL STRUCTURE AND MÖSSBAUER SPECTROSCOPY OF TSCHERMAKITE FROM THE RUBY LOCALITY AT FISKENAESSET, GREENLAND , 2009 .

[75]  F. Hawthorne,et al.  Nomenclature of the amphibole supergroup , 2012 .

[76]  M. Boiocchi,et al.  Aluminotaramite, alumino-magnesiotaramite, and fluoro-alumino-magnesiotaramite: Mineral data and crystal chemistry , 2007 .

[77]  W. Meurer,et al.  An occurrence of igneous orthorhombic amphibole, Eriksberg gabbro, southern Sweden , 2002 .

[78]  F. Hawthorne,et al.  Assignment of infrared OH-stretching bands in manganoan magnesio-arfvedsonite and richterite through heat-treatment , 2001 .

[79]  Horn,et al.  Dehydration melting and devolatilization during exhumation of high‐grade metapelites: the Tatra Mountains, Western Carpathians , 1999 .

[80]  F. Bosi,et al.  Cation ordering in Pb2+-bearing, Mn3+-rich pargasite from Långban, Sweden , 2012 .

[81]  J. D. Grice,et al.  Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associations amphibole nomenclature , 2004, Mineralogical Magazine.

[82]  Hrppnxo Sntrraezerr Sadanagaite and magnesio . sadanagaite , new silica-poor members of calcic amphibole from Japan , 2022 .

[83]  J. Webster,et al.  Cl-rich biotite and amphibole from Black Rock Forest, Cornwall, New York , 1996 .

[84]  D. J. Milton,et al.  Gedrite from oxford county, Maine , 1961 .

[85]  J. Schumacher Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers , 1991, Mineralogical Magazine.

[86]  A. Treiman AMPHIBOLE AND HERCYNITE SPINEL IN SHERGOTTY AND ZAGAMI: MAGMATIC WATER, DEPTH OF CRYSTALLIZATION, AND METASOMATISM , 1985 .

[87]  B. Leake,et al.  Hornblende barometry of the Galway batholith, Ireland: an empirical test , 1994 .

[88]  F. Hawthorne,et al.  Assignment of infrared OH-stretching bands in calcic amphiboles through deuteration and heat treatment , 2006 .

[89]  H. J. Kisch Magnesiocummingtonite-P21/m: A Ca- and Mn-Poor Clino-Amphibole from New South Wales , 1969 .

[90]  I. Nakai,et al.  Potassic-ferropargasite, a new member of the amphibole group, from Kabutoichiba, Mie Prefecture, central Japan , 2009 .

[91]  F. Melcher Genesis of chemical sediments in Birimian greenstone belts: evidence from gondites and related manganese-bearing rocks from northern Ghana , 1995, Mineralogical Magazine.

[92]  E. Vicenzi,et al.  Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for In Situ Lithium Isotope Determinations by SIMS , 2008 .

[93]  F. Hawthorne,et al.  Amphiboles: Crystal Chemistry , 2007 .

[94]  F. Hawthorne,et al.  Fine structure in the infrared OH-stretching bands of holmquistite and anthophyllite , 2003 .

[95]  K. Kullerud,et al.  Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust , 1999 .

[96]  F. Hawthorne,et al.  The role of Ti in hydrogen-deficient amphiboles; sodic-calcic and sodic amphiboles from Coyote Peak, California , 1998 .

[97]  Fuat Yavuz,et al.  WinAmphcal: A Windows program for the IMA‐04 amphibole classification , 2007 .

[98]  J. Dawson,et al.  Upper-mantle amphiboles: a review , 1982, Mineralogical Magazine.

[99]  The Malé Vrbno magnetite occurrence of the Velké-Vrbno Unit, Czech Republic: petrology, mineralogy, geochemistry and genesis , 2006 .

[100]  F. Cámara,et al.  Ferri-ottoliniite and ferriwhittakerite, two new end-members of the new Group 5 for monoclinic amphiboles , 2004 .

[101]  C. Mével,et al.  Jadeite-kosmochlor solid solution and chromian sodic amphiboles in jadeitites and associated rocks from Tawmaw (Burma) , 1986 .

[102]  F. Hawthorne The crystal chemistry of the amphiboles; V, The structure and chemistry of arfvedsonite , 1976 .

[103]  J. Zussman,et al.  Double Chain Silicates , 1997 .

[104]  M. Boiocchi,et al.  Fluoronyböite from Jianchang (Su-Lu, China) and nyböite from Nybö (nordfjord, norway): a petrological and crystal-chemical comparison of these two high-pressure amphiboles , 2003, Mineralogical Magazine.

[105]  C. Floss,et al.  Hammadah al Hamra 193: The first amphibole-bearing winonaite , 2007 .

[106]  A. Damman Hydrothermal subsilicic sodium gedrite from the Gåsborn area, West Bergslagen, central Sweden , 1988, Mineralogical Magazine.

[107]  M. Kurosawa,et al.  Potassicleakeite, a New Amphibole from the Tanohata Mine, Iwate Prefecture, Japan , 2002 .

[108]  E. Esawi Calculations of amphibole chemical parameters and implementation of the 2004 recommendations of the IMA classification and nomenclature of amphiboles , 2011 .

[109]  B. Leake,et al.  AMPH-IMA97: a hypercard program to determine the name of an amphibole from electron microprobe and wet chemical analyses , 2001 .

[110]  F. Cámara,et al.  Clinoholmquistite discredited: The new amphibole end-member fluoro-sodic-pedrizite , 2005 .

[111]  F. Hawthorne,et al.  The crystal chemistry of the amphiboles II Refinement of the crystal structure of oxy-kaersutite , 1973, Mineralogical Magazine.

[112]  S. Ghose,et al.  Crystal-chemistry of a complex Mn-bearing alkali amphibole (tirodite') on the verge of exsolution , 1993 .

[113]  T. Armbruster,et al.  Kanoite, donpeacorite and tirodite: Mn-Mg-silicates from a manganiferous quartzite in the United Arab Emirates , 1996 .

[114]  New minerals and nomenclature modifications approved in 2013 , 2013, Mineralogical Magazine.

[115]  Wills Memorial Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for In Situ Lithium Isotope Determinations by SIMS , 2008 .

[116]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[117]  P. Moore,et al.  Joesmithite, a plumbous amphibole revisited and comments on bond valences , 1993 .

[118]  M. Santosh,et al.  Sodicgedrite in ultrahigh-temperature Mg-Al-rich rocks from the Palghat-Cauvery Shear Zone system, southern India , 2007 .

[119]  P. Buseck,et al.  Protoanthophyllite from three metamorphosed serpentinites , 2002 .

[120]  F. Hawthorne,et al.  The crystal chemistry of the amphiboles. I: Refinement of the Crystal structure of ferrotschermakite , 1973, Mineralogical Magazine.

[121]  B. Leake,et al.  Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names , 1997 .

[122]  I. Borg Optical properties and cell parameters in the glaucophane-riebeckite series , 1967 .

[123]  Frank C. Hawthorne,et al.  The crystal chemistry of the amphiboles; IV, X-ray and neutron refinements of the crystal structure of tremolite , 1976 .

[124]  J. Schneider,et al.  FERRIAN WINCHITE FROM THE ILMEN MOUNTAINS, SOUTHERN URALS, RUSSIA, AND SOME PROBLEMS WITH THE CURRENT SCHEME FOR AMPHIBOLE NOMENCLATURE , 2001 .

[125]  F. Hawthorne The crystal chemistry of the amphiboles; VIII, The crystal structure and site chemistry of fluor-riebeckite , 1978 .