Creating Spectral Templates from Multicolor Redshift Surveys

Understanding how the physical properties of galaxies (e.g., their spectral type or age) evolve as a function of redshift relies on having an accurate representation of galaxy spectral energy distributions. While it has been known for some time that galaxy spectra can be reconstructed from a handful of orthogonal basis templates, the underlying basis is poorly constrained. The limiting factor has been the lack of large samples of galaxies (covering a wide range in spectral type) with high signal-to-noise spectrophotometric observations. To alleviate this problem we introduce here a new technique for reconstructing galaxy spectral energy distributions directly from samples of galaxies with broadband photometric data and spectroscopic redshifts. Exploiting the statistical approach of the Karhunen-Loeve expansion, our iterative training procedure increasingly improves the eigenbasis, so that it provides better agreement with the photometry. We demonstrate the utility of this approach by applying these improved spectral energy distributions to the estimation of photometric redshifts for the HDF sample of galaxies. We find that in a small number of iterations the dispersion in the photometric redshifts estimator (a comparison between predicted and measured redshifts) can decrease by up to a factor of 2.

[1]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[2]  S. Gwyn,et al.  The Redshift Distribution and Luminosity Functions of Galaxies in the Hubble Deep Field , 1996, astro-ph/9603149.

[3]  The Statistical Approach to Quantifying Galaxy Evolution , 1998, astro-ph/9812104.

[4]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[5]  A. J. Connolly,et al.  Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry , 1999, astro-ph/9910389.

[6]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[7]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[8]  Edwin L. Turner,et al.  A Catalog of Color-based Redshift Estimates for Z <~ 4 Galaxies in the Hubble Deep Field , 1998 .

[9]  A. Szalay,et al.  Measuring the galaxy power spectrum with future redshift surveys , 1997, astro-ph/9708020.

[10]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[11]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[12]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[13]  Lennox L. Cowie,et al.  Redshift Clustering in the Hubble Deep Field , 1996 .

[14]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[15]  Search Techniques for Distant Galaxies , 1999, astro-ph/9912082.

[16]  Arjun Dey,et al.  A z = 5.34 Galaxy Pair in the Hubble Deep Field , 1998 .

[17]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[18]  M. Dickinson A complete NICMOS map of the Hubble Deep Field , 1998 .

[19]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[20]  A. Szalay,et al.  Spectral classification of galaxies: An Orthogonal approach , 1994, astro-ph/9411044.

[21]  A. Fernandez-Soto,et al.  A New Catalog of Photometric Redshifts in the Hubble Deep Field , 1999 .

[22]  H. Lin,et al.  Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1997 .

[23]  L. J. Storrie-Lombardi,et al.  Keck Spectroscopy and NICMOS Photometry of a Redshift z = 5.60 Galaxy* , 1998 .

[24]  Mark Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996 .

[25]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, Data Reduction, and , 1996, astro-ph/9607174.