RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-SQL in Cross-Domain Databases

Text-to-SQL is the problem of converting a user question into an SQL query, when the question and database are given. In this paper, we present a neural network approach called RYANSQL (Recursively Yielding Annotation Network for SQL) to solve complex Text-to-SQL tasks for cross-domain databases. State-ment Position Code (SPC) is defined to trans-form a nested SQL query into a set of non-nested SELECT statements; a sketch-based slot filling approach is proposed to synthesize each SELECT statement for its corresponding SPC. Additionally, two input manipulation methods are presented to improve generation performance further. RYANSQL achieved 58.2% accuracy on the challenging Spider benchmark, which is a 3.2%p improvement over previous state-of-the-art approaches. At the time of writing, RYANSQL achieves the first position on the Spider leaderboard.

[1]  Xifeng Yan,et al.  What It Takes to Achieve 100% Condition Accuracy on WikiSQL , 2018, EMNLP.

[2]  Yue Zhang,et al.  A Pilot Study for Chinese SQL Semantic Parsing , 2019, EMNLP.

[3]  Kaushik Chakrabarti,et al.  X-SQL: reinforce schema representation with context , 2019, ArXiv.

[4]  T. Beck,et al.  A New Database on the Structure and Development of the Financial Sector , 2000 .

[5]  Weixin Wang,et al.  Re-examining the Role of Schema Linking in Text-to-SQL , 2020, EMNLP.

[6]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[7]  Quoc V. Le,et al.  ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators , 2020, ICLR.

[8]  Rishabh Singh,et al.  Robust Text-to-SQL Generation with Execution-Guided Decoding , 2018, 1807.03100.

[9]  Mirella Lapata,et al.  Coarse-to-Fine Decoding for Neural Semantic Parsing , 2018, ACL.

[10]  Weizhu Chen,et al.  IncSQL: Training Incremental Text-to-SQL Parsers with Non-Deterministic Oracles , 2018, ArXiv.

[11]  Li Xiu,et al.  Application of data mining techniques in customer relationship management: A literature review and classification , 2009, Expert Syst. Appl..

[12]  Mirella Lapata,et al.  Language to Logical Form with Neural Attention , 2016, ACL.

[13]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[14]  Navdeep Jaitly,et al.  Pointer Networks , 2015, NIPS.

[15]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[16]  Raymond J. Mooney,et al.  Learning to Parse Database Queries Using Inductive Logic Programming , 1996, AAAI/IAAI, Vol. 2.

[17]  Souvik Kundu,et al.  Hybrid Ranking Network for Text-to-SQL , 2020, ArXiv.

[18]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[19]  Tao Yu,et al.  SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL Task , 2018, EMNLP.

[20]  Tong Guo,et al.  Content Enhanced BERT-based Text-to-SQL Generation , 2019, ArXiv.

[21]  Jonathan Berant,et al.  Global Reasoning over Database Structures for Text-to-SQL Parsing , 2019, EMNLP.

[22]  Tao Yu,et al.  Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task , 2018, EMNLP.

[23]  Robin C. Meili,et al.  Can electronic medical record systems transform health care? Potential health benefits, savings, and costs. , 2005, Health affairs.

[24]  Jonathan Berant,et al.  Grammar-based Neural Text-to-SQL Generation , 2019, ArXiv.

[25]  Yan Gao,et al.  Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation , 2019, ACL.

[26]  Xiaodong Liu,et al.  RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers , 2020, ACL.

[27]  P. J. Price,et al.  Evaluation of Spoken Language Systems: the ATIS Domain , 1990, HLT.

[28]  Seunghyun Park,et al.  A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization , 2019, ArXiv.

[29]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[30]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[31]  Tao Yu,et al.  Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions , 2019, EMNLP.

[32]  Dawn Xiaodong Song,et al.  SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning , 2017, ArXiv.

[33]  Ming Zhou,et al.  Reinforced Mnemonic Reader for Machine Reading Comprehension , 2017, IJCAI.

[34]  Rui Yan,et al.  Natural Language Inference by Tree-Based Convolution and Heuristic Matching , 2015, ACL.

[35]  Dongjun Lee,et al.  Clause-Wise and Recursive Decoding for Complex and Cross-Domain Text-to-SQL Generation , 2019, EMNLP.

[36]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[37]  Richard Socher,et al.  Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning , 2018, ArXiv.

[38]  SangKeun Lee,et al.  Dynamic Self-Attention : Computing Attention over Words Dynamically for Sentence Embedding , 2018, ArXiv.

[39]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[40]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[41]  Tao Yu,et al.  TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation , 2018, NAACL.