An algorithm for indefinite integer quadratic programming

Abstract We present an algorithm for finding the global minimum of an indefinite quadratic function over the integers contained in a compact, convex set. To find this minimum, the algorithm first transforms the problem into an equivalent problem with a separable objective function. It then uses a branch and bound search on the values of the constraints, rather than the variables, of the transformed problem.

[1]  C. Witzgall,et al.  AN ALL-INTEGER PROGRAMMING ALGORITHM WITH PARABOLIC CONSTRAINTS* , 1963 .

[2]  E. Lawler The Quadratic Assignment Problem , 1963 .

[3]  Rafael Lazimy,et al.  Improved algorithm for mixed-integer quadratic programs and a computational study , 1985, Math. Program..

[4]  Harish Vaish,et al.  Nonconvex programming with applications to production and location problems , 1974 .

[5]  D. J. Laughhunn Quadratic Binary Programming with Application to Capital-Budgeting Problems , 1970, Oper. Res..

[6]  Lawrence J. Watters Letter to the Editor - Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems , 1967, Oper. Res..

[7]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[8]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[9]  Hamdy A. Taha,et al.  A Balasian-Based Algorithm for Zero-One Polynomial Programming , 1972 .

[10]  R. McBride,et al.  An Implicit Enumeration Algorithm for Quadratic Integer Programming , 1980 .

[11]  Egon Balas,et al.  Duality in Discrete Programming: II. The Quadratic Case , 1969 .

[12]  Lakshman S. Thakur,et al.  Domain Contraction in Nonlinear Programming: Minimizing a Quadratic Concave Objective Over a Polyhedron , 1991, Math. Oper. Res..

[13]  Egon Balas,et al.  Nonlinear 0–1 programming: I. Linearization techniques , 1984, Math. Program..

[14]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[15]  Willard I. Zangwill,et al.  Media Selection by Decision Programming , 1976 .

[16]  Lu Shi Hui An improved enumerative algorithm for solving quadratic zero-one programming , 1984 .

[17]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[18]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[19]  Egon Balas,et al.  Nonlinear 0–1 programming: II. Dominance relations and algorithms , 1983, Math. Program..

[20]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[21]  W. Greub Linear Algebra , 1981 .

[22]  Daniel Granot,et al.  Generalized Covering Relaxation for 0-1 Programs. , 1978 .

[23]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[24]  Daniel Granot,et al.  Technical Note - Generalized Covering Relaxation for 0-1 Programs , 1980, Oper. Res..

[25]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[26]  James C. T. Mao,et al.  An Extension of Lawler and Bell's Method of Discrete Optimization with Examples from Capital Budgeting , 1968 .

[27]  Fred W. Glover,et al.  Further Reduction of Zero-One Polynomial Programming Problems to Zero-One linear Programming Problems , 1973, Oper. Res..

[28]  Panos M. Pardalos,et al.  Global minimization of large-scale constrained concave quadratic problems by separable programming , 1986, Math. Program..

[29]  A. Victor Cabot,et al.  Solving Certain Nonconvex Quadratic Minimization Problems by Ranking the Extreme Points , 1970, Oper. Res..

[30]  Rafael Lazimy,et al.  Mixed-integer quadratic programming , 1982, Math. Program..