A study of aeroelastic stability for the model support system of the National Transonic Facility

Oscillations of wind-tunnel models have been observed during testing in the National Transonic Facility. These oscillations have been the subject of an extensive investigation. As a part of this effort, a study of the aeroelastic stability of the model support structure has been performed. This structure is mathematically modelled as a wing and conventional flutter analysis is performed. The math model implemented both experimentally and numerically obtained modal characteristics. A technique for illustrating the flutter boundary for wind tunnels is demonstrated. Results indicate that the classical flutter boundary is well above the operating envelope of the facility. However, the analysis indicates a damping-dependent instability is present which is inherent in the design. One possible modification in the design has been evaluated which eliminates the predicted instability.