A multilevel discontinuous Galerkin method

A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion problem, for which an error estimate is proved. A multigrid algorithm for this method is presented, and numerical experiments indicating its robustness with respect to diffusion coefficient are reported.

[1]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[2]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[3]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[4]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[5]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[6]  Christoph Pflaum,et al.  Robust Convergence of Multilevel Algorithms for Convection-Diffusion Equations , 1999, SIAM J. Numer. Anal..

[7]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[8]  Joseph E. Pasciak,et al.  THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .

[9]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[10]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[11]  Wolfgang Bangerth,et al.  Concepts for Object-Oriented Finite Element Software - the deal.II Library , 1999 .

[12]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[13]  Jian Shen,et al.  The analysis of multigrid algorithms for cell centered finite difference methods , 1996, Adv. Comput. Math..

[14]  Thomas Probst,et al.  Downwind Gauß-Seidel Smoothing for Convection Dominated Problems , 1997, Numer. Linear Algebra Appl..

[15]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[16]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[17]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[18]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[19]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[20]  I. Babuska The Finite Element Method with Penalty , 1973 .

[21]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[22]  Ingemar Persson,et al.  On the convergence of multigrid methods for flow problems , 1999 .

[23]  Wolfgang Hackbusch,et al.  Downwind Gauß‐Seidel Smoothing for Convection Dominated Problems , 1997 .

[24]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[25]  Andrea Toselli,et al.  An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems , 2000, Math. Comput..

[26]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[27]  Xiaobing Feng,et al.  Two-Level Additive Schwarz Methods for a Discontinuous Galerkin Approximation of Second Order Elliptic Problems , 2001, SIAM J. Numer. Anal..

[28]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[29]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[30]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.