Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals

Organized substructural arrangements of dislocations formed in wavy slip, face–centred–cubic metals during cyclic stress–induced fatigue are shown analytically to engender a substantial nonlinearity in the microelastic–plastic deformation resulting from an impressed stress perturbation. The non–Hookean stress–strain relationship is quantified by a material nonlinearity parameter βthat for a given fatigue state is highly sensitive to the volume fractions of veins and persistent slip bands (PSBs), PSB internal stresses, dislocation multipole configurations, dislocation loop lengths, dipole heights and the densities of secondary dislocations in the substructures. The effects on β of vacancy, microcrack and macrocrack formation are also addressed. The connection between β and acoustic harmonic generation is obtained. The model is applied to calculations of β for fatigued polycrystalline nickel as a function of per cent life to fracture. For cyclic stress–controlled loading at 241 MPa, the model predicts a monotonic increase in β of ca. 360% over the fatigue life. For strain–controlled loading at a total strain of 1.75 × 10−3, a monotonic increase in β of ca. 375% over the fatigue life is predicted.

[1]  Kun Huang On the atomic theory of elasticity , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  W. Shockley Imperfections in Nearly Perfect Crystals , 1952 .

[3]  Imperfections in nearly perfect crystals, W. Shockley, J. H. Hollomon, R. Maurer et F. Seitz, 1952 , 1953 .

[4]  A. J. Kennedy Possible dislocation gating mechanisms for fatigue extrusion , 1961 .

[5]  S. Cousland,et al.  Systematic microstructural changes peculiar to fatigue deformation , 1963 .

[6]  R. N. Thurston 1 – Wave Propagation in Fluids and Normal Solids , 1964 .

[7]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[8]  Charles Elbaum,et al.  Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves , 1965 .

[9]  M. Klesnil,et al.  Dislocations and Persistent Slip Bands in Copper Single Crystals Fatigued at Low Stress Amplitude , 1968, June 1.

[10]  J. Grosskreutz,et al.  Mechanisms of fatigue hardening in copper single crystals , 1969 .

[11]  A. Howie,et al.  Early stages of fatigue in copper single crystals , 1969 .

[12]  D. Wallace,et al.  Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants , 1970 .

[13]  P. J. Woods Low-amplitude fatigue of copper and copper-5 at. % aluminium single crystals , 1973 .

[14]  A. T. Winter,et al.  A model for the fatigue of copper at low plastic strain amplitudes , 1974 .

[15]  L. M. Brown,et al.  Vacancy dipoles in fatigued copper , 1976 .

[16]  O. Buck Harmonic Generation for Measurement of Internal Stresses as Produced by Dislocations , 1976, IEEE Transactions on Sonics and Ultrasonics.

[17]  J. Antonopoulos,et al.  Weak-beam study of dislocation structures in fatigued copper , 1976 .

[18]  H. Mughrabi,et al.  The cyclic hardening and saturation behaviour of copper single crystals , 1978 .

[19]  C. Laird,et al.  Crack nucleation and stage I propagation in high strain fatigue—I. Microscopic and interferometric observations , 1978 .

[20]  A. Winter Nucleation of persistent slip bands in cyclically deformed copper crystals , 1978 .

[21]  D. Kuhlmann-wilsdorf,et al.  Dislocation behavior in fatigue V: Breakdown of loop patches and formation of persistent slip bands and of dislocation cells , 1980 .

[22]  L. M. Brown DISLOCATIONS AND THE FATIGUE STRENGTH OF METALS , 1981 .

[23]  U. Gösele,et al.  A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions , 1981 .

[24]  K. V. Rasmussen,et al.  Dislocation microstructures in fatigued copper polycrystals , 1981 .

[25]  D. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1982 .

[26]  J. Cantrell Acoustic Radiation Stress in Solids , 1983 .

[27]  H. Mughrabi,et al.  Fatigue Crack Initiation by Cyclic Slip Irreversibilities in High-Cycle Fatigue , 1983 .

[28]  H. Mughrabi,et al.  Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals , 1983 .

[29]  M. Fine,et al.  Fatigue crack evolution in overaged Ni14.4at.% Al alloy with coherent precipitates , 1983 .

[30]  J. Cantrell Acoustic-radiation stress in solids. I - Theory , 1984 .

[31]  H. Mughrabi,et al.  Fatigue of copper single crystals in vacuum and in air I: Persistent slip bands and dislocation microstructures , 1984 .

[32]  H. Mughrabi,et al.  Secondary cyclic hardening in fatigued copper monocrystals and polycrystals , 1984 .

[33]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[34]  Initiation of fatigue cracks in aluminium alloys , 1988 .

[35]  S. G. Allison,et al.  The Use of Ultrasonic Harmonic Generation to Determine Crack Opening Conditions in Compact Tension Specimens , 1988 .

[36]  G. Welsch,et al.  Fatigue damage accumulation in nickel prior to crack initiation , 1991 .

[37]  J. H. Cantrell,et al.  Acoustoelastic characterisation of materials , 1991 .

[38]  S. Suresh Fatigue of materials , 1991 .

[39]  The influence of the structure of copper on its acoustic nonlinearity , 1991 .

[40]  Initiation and propagation of fatigue cracks , 1992 .

[41]  William T. Yost,et al.  Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer , 1992 .

[42]  William T. Yost,et al.  Acoustic harmonic generation from fatigue-induced dislocation dipoles , 1994 .

[43]  John H. Cantrell,et al.  Crystalline structure and symmetry dependence of acoustic nonlinearity parameters , 1994 .

[44]  R. Sedláček Internal stresses in dislocation wall structures , 1995 .

[45]  J. Cantrell,et al.  Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel , 1996 .

[46]  M. Hecker,et al.  Strain localization and internal stress fields in persistent slip bands , 1996 .

[47]  H. Christ,et al.  Cyclic stress-strain response and microstructure under variable amplitude loading , 1996 .

[48]  Alexander Sutin,et al.  Nonlinear elastic constants of solids with cracks , 1997 .

[49]  J. Kratochvíl,et al.  Self-organization approach to cyclic microplasticity: A model of a persistent slip band , 1998 .

[50]  Theodore E. Matikas,et al.  Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V , 1999 .

[51]  J. Cantrell,et al.  Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation , 2000 .

[52]  L. M. Brown Dislocation plasticity in persistent slip bands , 2000 .

[53]  J. Kratochvíl One-dimensional model of formation of dislocation matrix structure and temperature dependence of size of vein pattern , 2000 .

[54]  William T. Yost,et al.  Nonlinear ultrasonic characterization of fatigue microstructures , 2001 .

[55]  J. Kratochvíl Self-organization model of localization of cyclic strain into PSBs and formation of dislocation wall structure , 2001 .

[56]  Richard Barnett,et al.  Fatigue , 1896, The Lancet.