Toric 2-group anomalies via cobordism

2-group symmetries arise in physics when a 0-form symmetry $G^{[0]}$ and a 1-form symmetry $H^{[1]}$ intertwine, forming a generalised group-like structure. Specialising to the case where both $G^{[0]}$ and $H^{[1]}$ are compact, connected, abelian groups (i.e. tori), we analyse anomalies in such `toric 2-group symmetries' using the cobordism classification. As a warm up example, we use cobordism to study various 't Hooft anomalies (and the phases to which they are dual) in Maxwell theory defined on non-spin manifolds. For our main example, we compute the 5th spin bordism group of $B|\mathbb{G}|$ where $\mathbb{G}$ is any 2-group whose 0-form and 1-form symmetry parts are both $\mathrm{U}(1)$, and $|\mathbb{G}|$ is the geometric realisation of the nerve of the 2-group $\mathbb{G}$. By leveraging a variety of algebraic methods, we show that $\Omega^{\mathrm{Spin}}_5(B|\mathbb{G}|) \cong \mathbb{Z}/m$ where $m$ is the modulus of the Postnikov class for $\mathbb{G}$, and we reproduce the expected physics result for anomalies in 2-group symmetries that appear in 4d QED. Moving down two dimensions, we recap that any (anomalous) $\mathrm{U}(1)$ global symmetry in 2d can be enhanced to a toric 2-group symmetry, before showing that its associated local anomaly reduces to at most an order 2 anomaly, when the theory is defined with a spin structure.

[1]  Joe Davighi,et al.  Electroweak-flavour and quark-lepton unification: a family non-universal path , 2022, Journal of High Energy Physics.

[2]  Joe Davighi,et al.  Anomalies of non-Abelian finite groups via cobordism , 2022, Journal of High Energy Physics.

[3]  Lakshya Bhardwaj,et al.  Disconnected 0-Form and 2-Group Symmetries , 2022, 2206.01287.

[4]  K. Intriligator,et al.  Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond , 2022, 2205.09545.

[5]  Yi-Zhuang You,et al.  Proton stability: From the standard model to beyond grand unification , 2022, Physical Review D.

[6]  Kazuya Yonekura,et al.  Global anomalies in 8d supergravity , 2022, Journal of High Energy Physics.

[7]  J. Heckman,et al.  0-form, 1-form, and 2-group symmetries via cutting and gluing of orbifolds , 2022, Physical Review D.

[8]  Hao Y. Zhang,et al.  Higher symmetries of 5D orbifold SCFTs , 2022, Physical Review D.

[9]  Joe Davighi,et al.  Electroweak flavour unification , 2022, Journal of High Energy Physics.

[10]  Andrea Grigoletto,et al.  Anomalies of fermionic CFTs via cobordism and bootstrap , 2021, 2112.01485.

[11]  Fabio Apruzzi,et al.  2-Group symmetries and their classification in 6d , 2021, SciPost Physics.

[12]  Yuji Tachikawa,et al.  Matching higher symmetries across Intriligator-Seiberg duality , 2021, Journal of High Energy Physics.

[13]  Miguel Montero,et al.  The anomaly that was not meant IIB , 2021, Fortschritte der Physik.

[14]  Lakshya Bhardwaj 2-Group symmetries in class S , 2021, SciPost Physics.

[15]  A. Grigoletto,et al.  Spin-Cobordisms, Surgeries and Fermionic Modular Bootstrap , 2021, Communications in Mathematical Physics.

[16]  Fabio Apruzzi,et al.  The Global Form of Flavor Symmetries and 2-Group Symmetries in 5d SCFTs , 2021, SciPost Physics.

[17]  D. Gaiotto,et al.  Global anomalies on the Hilbert space , 2021, Journal of High Energy Physics.

[18]  Joe Davighi,et al.  Omega vs. pi, and 6d anomaly cancellation , 2020, Journal of High Energy Physics.

[19]  Yuji Tachikawa,et al.  Some comments on 6D global gauge anomalies , 2020, Progress of Theoretical and Experimental Physics.

[20]  Joe Davighi,et al.  The algebra of anomaly interplay , 2020, 2011.10102.

[21]  N. Iqbal,et al.  2-group global symmetries, hydrodynamics and holography. , 2020, 2010.00320.

[22]  K. Ohmori,et al.  2-Group Symmetries of 6D Little String Theories and T-Duality , 2020, Annales Henri Poincaré.

[23]  Chao-Ming Jian,et al.  Physics of symmetry protected topological phases involving higher symmetries and its applications , 2020, 2009.00023.

[24]  Ho Tat Lam,et al.  Discrete theta angles, symmetries and anomalies , 2020, SciPost Physics.

[25]  Juven C. Wang,et al.  Beyond Standard Models and Grand Unifications: anomalies, topological terms, and dynamical constraints via cobordisms , 2020, Journal of High Energy Physics.

[26]  Konstantinos Roumpedakis,et al.  Line operators of gauge theories on non-spin manifolds , 2019, 1911.00589.

[27]  Juven C. Wang,et al.  Beyond Standard Models and Grand Unifications: anomalies, topological terms, and dynamical constraints via cobordisms , 2019, 1910.14668.

[28]  Z. Komargodski,et al.  Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism , 2019, SciPost Physics.

[29]  K. Ohmori,et al.  Decorated Z2 symmetry defects and their time-reversal anomalies , 2019, 1910.14046.

[30]  Joe Davighi,et al.  Global anomalies in the Standard Model(s) and beyond , 2019, Journal of High Energy Physics.

[31]  Kazuya Yonekura,et al.  Anomaly of the Electromagnetic Duality of Maxwell Theory. , 2019, Physical review letters.

[32]  Po-Shen Hsin,et al.  Symmetry-enriched quantum spin liquids in (3 + 1)d , 2019, Journal of High Energy Physics.

[33]  Juven C. Wang,et al.  Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory , 2018, Annals of Mathematical Sciences and Applications.

[34]  E. Witten,et al.  A new SU(2) anomaly , 2018, Journal of Mathematical Physics.

[35]  M. Montero,et al.  Dai-Freed anomalies in particle physics , 2018, Journal of High Energy Physics.

[36]  Kazuya Yonekura,et al.  Why are fractional charges of orientifolds compatible with Dirac quantization? , 2018, SciPost Physics.

[37]  Clay Córdova,et al.  On 2-group global symmetries and their anomalies , 2018, Journal of High Energy Physics.

[38]  Kazuya Yonekura,et al.  Anomalies of duality groups and extended conformal manifolds , 2018, Progress of Theoretical and Experimental Physics.

[39]  K. Intriligator,et al.  Exploring 2-group global symmetries , 2018, Journal of High Energy Physics.

[40]  J. Campbell,et al.  A Guide for Computing Stable Homotopy Groups , 2018, 1801.07530.

[41]  Kazuya Yonekura,et al.  8d gauge anomalies and the topological Green-Schwarz mechanism , 2017, 1710.04218.

[42]  E. Witten The "parity" anomaly on an unorientable manifold , 2016, 1605.02391.

[43]  E. Witten,et al.  Gapped boundary phases of topological insulators via weak coupling , 2016, 1602.04251.

[44]  Zitao Wang,et al.  Fermionic symmetry protected topological phases and cobordisms , 2015, Journal of High Energy Physics.

[45]  E. Witten Fermion Path Integrals And Topological Phases , 2015, 1508.04715.

[46]  E. Sharpe Notes on generalized global symmetries in QFT , 2015, 1508.04770.

[47]  T. Senthil,et al.  Time-Reversal Symmetric $U(1)$ Quantum Spin Liquids , 2015, 1505.03520.

[48]  Ryan Thorngren Framed Wilson operators, fermionic strings, and gravitational anomaly in 4d , 2014, Journal of High Energy Physics.

[49]  Nathan Seiberg,et al.  Generalized global symmetries , 2014, 1412.5148.

[50]  J. McGreevy,et al.  All-fermion electrodynamics and fermion number anomaly inflow , 2014, 1409.8339.

[51]  Zitao Wang,et al.  Fermionic symmetry protected topological phases and cobordisms , 2014, Journal of High Energy Physics.

[52]  D. Freed Anomalies and Invertible Field Theories , 2014, 1404.7224.

[53]  L. Breen,et al.  Derived functors of the divided power functors , 2013, 1312.5676.

[54]  A. Kapustin,et al.  Higher symmetry and gapped phases of gauge theories , 2013, 1309.4721.

[55]  D. Freed,et al.  Relative Quantum Field Theory , 2012, 1212.1692.

[56]  D. Fiorenza,et al.  Multiple M5-branes, String 2-connections, and 7d nonabelian Chern-Simons theory , 2012, 1201.5277.

[57]  Christopher J. Schommer-Pries Central extensions of smooth 2–groups and a finite-dimensional string 2–group , 2009, 0911.2483.

[58]  H. Sati,et al.  Differential twisted String and Fivebrane structures , 2009 .

[59]  Wen-tsün Wu Classes caractéristiques et i-carrés d'une variété , 2008 .

[60]  J. Baez,et al.  The Classifying Space of a Topological 2-Group , 2008, 0801.3843.

[61]  D. Freed Pions and generalized cohomology , 2006, hep-th/0607134.

[62]  Alissa S. Crans,et al.  From loop groups to 2-groups , 2005, math/0504123.

[63]  T. Bartels Higher gauge theory I: 2-Bundles , 2004, math/0410328.

[64]  D. Freed,et al.  Setting the Quantum Integrand of M-Theory , 2004, hep-th/0409135.

[65]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[66]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[67]  V. Nair,et al.  Non perturbative anomalies in higher dimensions , 1984 .

[68]  E. Witten Global Aspects of Current Algebra , 1983 .

[69]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian Geometry. I , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[70]  A. Liulevicius The cohomology of a subalgebra of the Steenrod algebra , 1962 .

[71]  C. Wall Determination of the Cobordism Ring , 1960 .

[72]  J. Adams,et al.  On the structure and applications of the steenrod algebra , 1958 .

[73]  Jean-Pierre Serre,et al.  Cohomologie modulo 2 des complexes d’Eilenberg-MacLane , 1953 .

[74]  Jean-Pierre Serre,et al.  Homologie Singuliere Des Espaces Fibres , 1951 .

[75]  E. Witten,et al.  Anomaly Inflow and the η-Invariant , 2021, Memorial Volume for Shoucheng Zhang.

[76]  A. Bahri THE ETA INVARIANT , Pin c BORDISM , AND EQUIVARIANT Spin c BORDISM FOR CYCLIC 2-GROUPS , 2012 .

[77]  Peter Teichner,et al.  On the signature of four-manifolds with universal covering spin , 1993 .

[78]  E. Witten Global gravitational anomalies , 1985 .

[79]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[80]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[81]  M. Atiyah,et al.  Vector bundles and homogeneous spaces , 1961 .