DETERMINISTIC CONSTRUCTION OF SYNCHRONIZATION STRING OVER SMALL ALPHABET

Synchronization string, first introduced by Haeupler and Shahrasbi [10], is a strong tool in construction of error correcting codes for insertion and deletion errors (insdel codes). Synchronization string provides a way to encode the indices of symbols in a string and makes it possible to transfer synchronization errors to easier half errors, which is much better understood. In this paper, we improve the construction in [10] in the following aspects: • We achieve a smaller alphabet size, reduce the alphabet size from O(ε−4) in [10] to O(ε−2). • We give an efficient deterministic construction of synchronization string over alphabet of size O(ε−3). • We give a near linear deterministic construction of synchronization string over alphabet of size O(ε−4). This algorithm runs in O(n log log n). Independently, Haeupler and Shahrasbi give a linear, deterministic construction for synchronization string over alphabet of ε−O(1) in their work [11]. • We introduce a combinatorial object called synchronization circle which enhances the property of synchronization string.

[1]  Allan Borodin,et al.  Fast Modular Transforms via Division , 1972, SWAT.

[2]  Allan Borodin,et al.  Fast Modular Transforms , 1974, J. Comput. Syst. Sci..

[3]  Éric Schost,et al.  Tellegen's principle into practice , 2003, ISSAC '03.

[4]  Vahid Tarokh,et al.  A survey of error-correcting codes for channels with symbol synchronization errors , 2010, IEEE Communications Surveys & Tutorials.

[5]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[6]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[7]  Ran Raz,et al.  Interactive channel capacity , 2013, STOC '13.

[8]  Madhu Sudan,et al.  Optimal error rates for interactive coding I: adaptivity and other settings , 2013, STOC.

[9]  Bernhard Haeupler,et al.  Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[10]  Bernhard Haeupler,et al.  Interactive Channel Capacity Revisited , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[11]  Ran Gelles,et al.  Capacity of Interactive Communication over Erasure Channels and Channels with Feedback , 2015, SIAM J. Comput..

[12]  Bernhard Haeupler,et al.  Synchronization strings: codes for insertions and deletions approaching the Singleton bound , 2017, STOC.

[13]  Ran Gelles,et al.  Coding for Interactive Communication: A Survey , 2017, Found. Trends Theor. Comput. Sci..

[14]  Mark Braverman,et al.  Coding for Interactive Communication Correcting Insertions and Deletions , 2017, IEEE Transactions on Information Theory.

[15]  Bernhard Haeupler,et al.  Synchronization strings: explicit constructions, local decoding, and applications , 2017, STOC.

[16]  Bernhard Haeupler,et al.  Synchronization Strings: Channel Simulations and Interactive Coding for Insertions and Deletions , 2017, ICALP.