Cuticle-catalyzed coupling between N-acetylhistidine and N-acetyldopamine

[1]  S. O. Andersen,et al.  Phenoloxidase catalyzed coupling of catechols. Identification of novel coupling products. , 1992, Biochimica et biophysica acta.

[2]  S. O. Andersen,et al.  Catecholamine-protein conjugates: isolation of 4-phenylphenoxazin-2-ones from oxidative coupling of N-acetyldopamine with aliphatic amino acids , 1992 .

[3]  S. O. Andersen,et al.  Biphenyltetrols and Dibenzofuranones from Oxidative Coupling of Resorcinols with 4-Alkylpyrocatechols: New Clues to the Mechanism of Insect Cuticle Sclerotization. , 1991 .

[4]  S. O. Andersen,et al.  Biphenyltetrols and Dibenzofuranones from Oxidative Coupling of Resorcinols with 4‐Alkylpyrocatechols: New Ciues to the Mechanism of Insect Cuticle Sclerotization , 1991 .

[5]  K. Kramer,et al.  Detection of cross-links in insect cuticle by REDOR NMR spectroscopy , 1991 .

[6]  M. Sugumaran,et al.  Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome II, a yellow wing pigment of papilionid butterflies , 1991, FEBS letters.

[7]  S. O. Andersen,et al.  Catecholamine-protein conjugates: Isolation of an adduct of N-acetylhistidine to the side chain of N-acetyldopamine from an insect-enzyme catalyzed reaction , 1991 .

[8]  M. Sugumaran,et al.  Quinone and quinone methide as transient intermediates involved in the side chain hydroxylation of N-acyldopamine derivatives by soluble enzymes from Manduca sexta cuticle. , 1991, Archives of insect biochemistry and physiology.

[9]  O. Agrawal,et al.  Sclerotization of Insect Cuticle in a Cell-Free System , 1990 .

[10]  M. Sugumaran,et al.  Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide. , 1990, Archives of insect biochemistry and physiology.

[11]  M. Sugumaran,et al.  On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata. , 1990, Archives of insect biochemistry and physiology.

[12]  S. Saul,et al.  N‐acetyldopamine quinone methide/1,2‐dehydro‐N‐acetyl dopamine tautomerase , 1989, FEBS letters.

[13]  M. Peter Chemical Modification of Biopolymers by Quinones and Quinone Methides , 1989 .

[14]  M. Sugumaran,et al.  Characterization of a new enzyme system that desaturates the side chain of N‐acetyldopamine , 1989, FEBS letters.

[15]  M. Sugumaran,et al.  Trapping of transiently formed quinone methide during enzymatic conversion of N‐acetyldopamine to N‐acetylnorepinephrine , 1989, FEBS letters.

[16]  M. G. Peter Chemische Modifikation von Biopolymeren durch Chinone und Chinonmethide , 1989 .

[17]  M. Peter Chemical Modifications of Biopolymers by Quinones and Quinone Methides , 1989 .

[18]  S. O. Andersen Oxidation of N-β-alanyldopamine by insect cuticles and its role in cuticular sclerotization , 1989 .

[19]  M. Sugumaran,et al.  Chemical- and cuticular phenoloxidase- mediated synthesis of cysteinyl–catechol adducts , 1989 .

[20]  M. Yago Enzymic synthesis of papiliochrome II, a yellow pigment in the wings of papilionid butterflies , 1989 .

[21]  S. O. Andersen Investigation of an Ortho-quinone isomerase from larval cuticle of the American silkmoth, Hyalophora cecropia , 1989 .

[22]  S. O. Andersen Enzymatic activities in locust cuticle involved in sclerotization , 1989 .

[23]  S. O. Andersen Enzymatic activities involved in incorporation of N-acetyldopamine into insect cuticle during sclerotization , 1989 .

[24]  P. Højrup,et al.  Optimization of sample preparation for plasma desorption mass spectrometry of peptides and proteins using a nitrocellulose matrix , 1988 .

[25]  M. Sugumaran,et al.  A novel quinone: Quinone methide isomerase generates quinone methides in insect cuticle , 1988, FEBS letters.

[26]  E. Stejskal,et al.  Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. , 1987, Science.

[27]  M. Peter,et al.  Lack of stereoselectivity in the enzymatic conversion of N-acetyldopamine into N-acetylnoradrenaline in insect cuticle , 1985 .

[28]  M. Peter,et al.  Incorporation of Radiolabeled Tyrosine, N-Acetyldopamine, N-β-Alanyldopamine, and the Arylphorin Manducin into the Sclerotized Cuticle of Tobacco Hornworm (Manduca sexta) Pupae , 1984 .

[29]  H. Förster,et al.  CP/MAS‐13C‐NMR‐Spektren von sklerotisierter Insektencuticula und von Chitin , 1984 .

[30]  M. Sugumaran,et al.  Crosslink precursors for the dipteran puparium. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. O. Andersen,et al.  Sclerotization of insect cuticle—III. An unsaturated derivative of N-acetyldopamine and its role in sclerotization , 1982 .

[32]  S. O. Andersen,et al.  Sclerotization of insect cuticle—II. Isolation and identification of phenolic dimers from sclerotized insect cuticle , 1981 .

[33]  M. Peter Products of in vitro oxidation of N-acetyldopamine as possible components in the sclerotization of insect cuticle , 1980 .

[34]  S. O. Andersen Biochemistry of Insect Cuticle , 1979 .