The k-independence number of graph products

The concept of k-independent number is a natural generalization of classical independence number. A k-independent set is a set of vertices whose induced subgraph has maximum degree at most k. The k-independence number of G, denoted by αk(G), is defined as the maximum cardinality of a k-independent set of G. In this paper, we study the k-independence number on the lexicographical, strong, Cartesian and direct product and present several upper and lower bounds for these products of graphs.

[1]  Abdel Elah Al-Ayyoub,et al.  The Cross Product of Interconnection Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[2]  V. G. Vizing The cartesian product of graphs , 1963 .

[3]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[4]  Odile Favaron,et al.  k-Domination and k-Independence in Graphs: A Survey , 2012, Graphs Comb..

[5]  Yaping Mao,et al.  Path-connectivity of lexicographic product graphs , 2016, Int. J. Comput. Math..

[6]  Dennis P. Geller,et al.  The chromatic number and other functions of the lexicographic product , 1975 .

[7]  Selim G. Akl,et al.  Optimal Communication Primitives on the Generalized Hypercube Network , 1996, J. Parallel Distributed Comput..

[8]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[9]  Sabine R. Öhring,et al.  Embeddings Into Hyper Petersen Networks: Yet Another Hypercube-Like Interconnection Topology , 1995 .

[10]  Simon Spacapan The k-independence number of direct products of graphs and Hedetniemi's conjecture , 2011, Eur. J. Comb..

[11]  M. Jacobson,et al.  n-Domination in graphs , 1985 .

[12]  P. K. Jha,et al.  Independence numbers of product graphs , 1994 .

[13]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[14]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..

[15]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..