Paquets d'Arthur des groupes classiques et unitaires

Let $G=\mathbf{G}(\mathbb{R})$ be the group of real points of a quasi-split connected reductive algebraic group defined over $\mathbb{R}$. Assume furthermore that $G$ is a classical group (symplectic, special orthogonal or unitary). We show that the packets of irreducible unitary cohomological representations defined by Adams and Johnson in 1987 coincide with the ones defined recently by J. Arthur in his work on the classification of the discrete automorphic spectrum of classical groups (C.-P. Mok for unitary groups). For this, we compute the endoscopic transfer of the stable distributions on $G$ supported by these packets to twisted $\mathbf{GL}_N$ in terms of standard modules and show that it coincides with the twisted trace prescribed by Arthur.

[1]  J. Arthur The Endoscopic Classification of Representations , 2017 .

[2]  C. Moeglin,et al.  Endoscopie tordue sur un corps local , 2016 .

[3]  Nicolas-Jose Arancibia-Robert Paquets d'Arthur des représentations cohomologiques , 2015 .

[4]  P. Mezo TEMPERED SPECTRAL TRANSFER IN THE TWISTED ENDOSCOPY OF REAL GROUPS , 2014, Journal of the Institute of Mathematics of Jussieu.

[5]  Olivier Taïbi Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula , 2014 .

[6]  J. Millson,et al.  The Hodge conjecture and arithmetic quotients of complex balls , 2013, 1306.1515.

[7]  J. Labesse,et al.  La formule des traces tordue d'après le Friday Morning Seminar , 2013 .

[8]  C. Moeglin Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands , 2012, 1212.5433.

[9]  D. Shelstad On geometric transfer in real twisted endoscopy , 2012 .

[10]  Gaëtan Chenevier,et al.  Level one algebraic cusp forms of classical groups of small ranks , 2012, 1207.0724.

[11]  Chung Pang Mok Endoscopic classification of representations of quasi-split unitary groups , 2012, 1206.0882.

[12]  J. Millson,et al.  Hodge type theorems for arithmetic manifolds associated to orthogonal groups , 2011, 1110.3049.

[13]  F. Shahidi Eisenstein Series and Automorphic $l$-functions , 2010 .

[14]  Gaëtan Chenevier,et al.  On the vanishing of some non-semisimple orbital integrals , 2010 .

[15]  Peter E. Trapa,et al.  Pattern avoidance and smoothness of closures for orbits of a symmetric subgroup in the flag variety , 2009, 0904.4493.

[16]  Jeffrey Adams,et al.  Algorithms for representation theory of real reductive groups , 2008, Journal of the Institute of Mathematics of Jussieu.

[17]  L. Clozel,et al.  Corps de nombres peu ramifiés et formes automorphes autoduales , 2007, 0706.3336.

[18]  S. Gelbart,et al.  On automorphic L-functions , 2006 .

[19]  F. Incitti The Bruhat Order on the Involutions of the Symmetric Group , 2004 .

[20]  Hisayosi Matumoto On the representations of Sp(p, q) and SO*(2n) unitarily induced from derived functor modules , 2002, Compositio Mathematica.

[21]  A. Bouaziz Quelques remarques sur les distributions invariantes dans les algèbres de Lie réductives , 2004 .

[22]  J. Arthur A stable trace formula III. Proof of the main theorems , 2003 .

[23]  E. M. Baruch A proof of Kirillov's conjecture , 2003 .

[24]  D. Shelstad,et al.  Foundations of twisted endoscopy , 2018, Astérisque.

[25]  A. Yamamoto Orbits in the flag variety and images of the moment map for classical groups I , 1997 .

[26]  A. W. Knapp,et al.  Cohomological Induction and Unitary Representations , 1995 .

[27]  Joseph F. Johnson Stable base changeℂ/ℝ of certain derived functor modules , 1990 .

[28]  J. Arthur TheL2-Lefschetz numbers of Hecke operators , 1989 .

[29]  J. Arthur Intertwining operators and residues I. Weighted characters , 1989 .

[30]  R. Langlands On the Classification of Irreducible Representations of Real Algebraic Groups , 1988 .

[31]  Joseph F. Johnson,et al.  Endoscopic groups and packets of non-tempered representations , 1987 .

[32]  D. Vogan The unitary dual of GL(n) over an archimedean field , 1986 .

[33]  D. Barbasch,et al.  Unipotent representations of complex semisimple groups , 1985 .

[34]  Joseph F. Johnson Lie algebra cohomology and the resolution of certain Harish-Chandra modules , 1984 .

[35]  D. Vogan Irreducible characters of semisimple lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case , 1983 .

[36]  J. Arthur On some problems suggested by the trace formula , 1983 .

[37]  Jr. David A. Vogan Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality , 1982 .

[38]  L. Clozel Changement de base pour les représentations tempérées des groupes réductifs réels , 1982 .

[39]  F. Shahidi On Certain L-Functions , 1981 .

[40]  D. Vogan Representations of real reductive Lie groups , 1981 .

[41]  R. Langlands,et al.  L-Indistinguishability For SL (2) , 1979, Canadian Journal of Mathematics.

[42]  Compositio Mathematica,et al.  Characters and inner forms of a quasi-split group over $R$ , 1979 .

[43]  J. Shalika The Multiplicity One Theorem for GL n , 1974 .

[44]  E. Stein,et al.  Interwining Operators for Semisimple Groups , 1971 .

[45]  G. Schiffmann Intégrales d'entrelacement et fonctions de Whittaker , 1971 .