High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5.

[1]  A. Brzozowski,et al.  Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6 A and its cellobiose complex at 2.0 A resolution. , 1998, Biochemistry.

[2]  L. Lally The CCP 4 Suite — Computer programs for protein crystallography , 1998 .

[3]  B Henrissat,et al.  Structural and sequence-based classification of glycoside hydrolases. , 1997, Current opinion in structural biology.

[4]  R. Pickersgill,et al.  Crystallization and preliminary X-ray analysis of the major endoglucanase from Thermoascus aurantiacus. , 1997, Acta crystallographica. Section D, Biological crystallography.

[5]  A. Schmidt,et al.  Freeze-Trapping Isomorphous Xenon Derivatives of Protein Crystals , 1997 .

[6]  V S Lamzin,et al.  wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. , 1997, Acta crystallographica. Section D, Biological crystallography.

[7]  S. Shima,et al.  Formylmethanofuran: tetrahydromethanopterin formyltransferase from Methanopyrus kandleri - new insights into salt-dependence and thermostability. , 1997, Structure.

[8]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[9]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[10]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[11]  R. Chandrasekaran Molecular architecture of polysaccharide helices in oriented fibers. , 1997, Advances in carbohydrate chemistry and biochemistry.

[12]  G. Kleywegt,et al.  Detecting folding motifs and similarities in protein structures. , 1997, Methods in enzymology.

[13]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[14]  B. Henrissat,et al.  Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. , 1996, Biochemistry.

[15]  W. Zimmermann,et al.  Crystallization and preliminary crystallographic analysis of two beta-mannanase isoforms from Thermomonospora fusca KW3. , 1996, Acta crystallographica. Section D, Biological crystallography.

[16]  M. Himmel,et al.  Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. , 1996, Biochemistry.

[17]  G J Kleywegt,et al.  Efficient rebuilding of protein structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[18]  M. Lascombe,et al.  The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. , 1996, Journal of molecular biology.

[19]  Dedreia Tull,et al.  Crystallographic observation of a covalent catalytic intermediate in a β-glycosidase , 1996, Nature Structural Biology.

[20]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[21]  Zbigniew Dauter,et al.  A common protein fold and similar active site in two distinct families of β-glycanases , 1996, Nature Structural Biology.

[22]  K. S. Yip,et al.  The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. , 1995, Structure.

[23]  M. Czjzek,et al.  Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. , 1995, Structure.

[24]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[25]  F. Barras,et al.  Informational suppression to investigate structural functional and evolutionary aspects of the Erwinia chrysanthemi cellulase EGZ. , 1995, Journal of molecular biology.

[26]  U Derewenda,et al.  Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. , 1995, The Journal of biological chemistry.

[27]  S. Withers,et al.  Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. , 1994, Biochemistry.

[28]  P. Colman,et al.  Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[30]  D. Dorset,et al.  Electron crystallographic analysis of a polysaccharide structure--direct phase determination and model refinement for mannan I. , 1993, Journal of structural biology.

[31]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[32]  S. Withers,et al.  Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. , 1993, The Journal of biological chemistry.

[33]  D. Kluepfel,et al.  Beta-mannanase of Streptomyces lividans 66: cloning and DNA sequence of the manA gene and characterization of the enzyme. , 1993, The Biochemical journal.

[34]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[35]  H. Sigel,et al.  Degradation of environmental pollutants by microorganisms and their metalloenzymes , 1992 .

[36]  W. Zimmermann Bacterial degradation of hemicelluloses , 1992 .

[37]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[38]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[39]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[40]  J E Wampler,et al.  Occurrence and role of cis peptide bonds in protein structures. , 1990, Journal of molecular biology.

[41]  P Béguin,et al.  Molecular biology of cellulose degradation. , 1990, Annual review of microbiology.

[42]  S. Pérez,et al.  An electron diffraction study of the mannan I crystal and molecular structure , 1987 .

[43]  D. Purdy,et al.  Structures and mechanisms , 1984 .

[44]  J. Thornton,et al.  Ion-pairs in proteins. , 1983, Journal of molecular biology.

[45]  B. McCleary Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase , 1983 .

[46]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .