An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem

The present paper is concerned with the unilateral contact model in linear elastostatics, the so-called Signorini problem. (Our results can also be applied to the scalar Signorini problem.) A standard continuous linear finite element approximation is first chosen to approach the two-dimensional problem. We develop a new error analysis in the $H^1$-norm using estimates on Poincare constants with respect to the size of the areas of the noncontact sets. In particular we do not assume any additional hypothesis on the finiteness of the set of transition points between contact and noncontact. This approach allows us to establish better error bounds under sole $H^{\tau}$ assumptions on the solution: if $3/2 < \tau <2$ we improve the existing rate by a factor $h^{(\tau -3/2)^2}$ and if $\tau = 2$ the existing rate $(h^{3/4})$ is improved by a new rate of $h \sqrt{\vert\ln(h)\vert}$. Using the same finite element spaces as previously we then consider another discrete approximation of the (nonlinear) contact condit...

[1]  Jaak Peetre Espaces d'interpolation et théorème de Soboleff , 1966 .

[2]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[3]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[4]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[5]  Luc Tartar Nonlinear Partial Differential Equations Using Compactness. , 1976 .

[6]  G. Fichera,et al.  Problemi elastostatici con ambigue condizioni al contorno , 2011 .

[7]  W. Ziemer Weakly differentiable functions , 1989 .

[8]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[9]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[10]  P. Wriggers Computational contact mechanics , 2012 .

[11]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[12]  L. Tartar,et al.  Sur un lemme d'equivalence utilise en analyse numerique , 1987 .

[13]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[16]  Patrick Hild,et al.  A propos d'approximation par elements finis optimale pour les problèmes de contact unilatéral , 1998 .

[17]  W. Han,et al.  Contact problems in elasticity , 2002 .

[18]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[19]  Jaroslav Haslinger Finite element analysis for unilateral problems with obstacles on the boundary , 1977 .

[20]  Richard S. Falk Approximation of an elliptic boundary value problem with unilateral constraints , 1975 .

[21]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[22]  Ivan Hlaváček,et al.  Contact between elastic bodies. I. Continuous problems , 1980 .

[23]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[24]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[25]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[26]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[27]  G. Burton Sobolev Spaces , 2013 .

[28]  T. Laursen Computational Contact and Impact Mechanics , 2003 .