Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites.

We report on the enhanced thermoelectric properties of selenium (Se) doped bismuth telluride (Bi(2)Te(3-x)Se(x)) nanoplatelet (NP) composites synthesized by the polyol method. Variation of the Se composition within NPs is demonstrated by X-ray diffraction and Raman spectroscopy. While the calculated lattice parameters closely follow the Vegard's law, a discontinuity in the shifting of the high frequency (E(g)(2) and A(1g)(2)) phonon modes illustrates a two mode behavior for Bi(2)Te(3-x)Se(x) NPs. The electrical resistivity (ρ) of spark plasma sintered pellet composites shows metallic conduction for pure Bi(2)Te(3) NP composites and semiconducting behavior for intermediate Se compositions. The thermal conductivity (κ) for all NP composites is much smaller than the bulk values and is dominated by microstructural grain boundary scattering. With temperature dependent electrical and thermal transport measurements, we show that both the thermoelectric power S (-259 μV/K) and the figure of merit ZT (0.54) are enhanced by nearly a factor of 4 for SPS pellets of Bi(2)Te(2.7)Se(0.3) in comparison to Bi(2)Te(3) NP composites. Tentatively, such an enhancement of the thermoelectric performance in nanoplatelet composites is attributed to the energy filtering of low energy electrons by abundant grain boundaries in aligned nanocomposites.

[1]  Jun Zhang,et al.  Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. , 2011, Nano letters.

[2]  M. Dresselhaus,et al.  Power factor enhancement by modulation doping in bulk nanocomposites. , 2011, Nano letters.

[3]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[4]  M. Zebarjadi,et al.  Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. , 2011, Nano letters.

[5]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[6]  C. Karthik,et al.  Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. , 2010, ACS nano.

[7]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[8]  A. Datta,et al.  Facile Chemical Synthesis of Nanocrystalline Thermoelectric Alloys Based on Bi−Sb−Te−Se , 2010 .

[9]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[10]  C. Klinke,et al.  ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. , 2010, ACS nano.

[11]  Yixin Zhao,et al.  Improving Thermoelectric Properties of Chemically Synthesized Bi2Te3-Based Nanocrystals by Annealing , 2010 .

[12]  W. Wang,et al.  Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies , 2010, Advanced materials.

[13]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[14]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[15]  A. Majumdar,et al.  Universal and Solution-Processable Precursor to Bismuth Chalcogenide Thermoelectrics , 2010 .

[16]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[17]  J. E. Moore,et al.  In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi₂Te₃ and Bi₂Se₃. , 2010, Physical review letters.

[18]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[19]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[20]  G. J. Snyder,et al.  Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science , 2009 .

[21]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[22]  A. Majumdar Thermoelectric devices: Helping chips to keep their cool. , 2009, Nature nanotechnology.

[23]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[24]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[25]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[26]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[27]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[28]  M. Zebarjadi,et al.  Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique , 2006, cond-mat/0610056.

[29]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[30]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[31]  Jerry R. Meyer,et al.  Antisite defects of Bi2Te3 thin films , 1999 .

[32]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[33]  Brian C. Sales,et al.  Thermoelectric Materials: New Approaches to an Old Problem , 1997 .

[34]  H. Scherrer,et al.  Transport properties of n-type Bi2(Te1−xSex)3 single crystal solid solutions (x ⩽ 0.05) , 1995 .

[35]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[36]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[37]  L. Koudelka,et al.  Antisite defects in narrow-gap layered chalcogenides of A2VB3VI type , 1988 .

[38]  J. Richter,et al.  Temperature dependence of the thermoelectric power of disordered alloys , 1982 .

[39]  G. Mahan,et al.  Mott's formula for the thermopower and the Wiedemann-Franz law , 1980 .

[40]  W. Richter,et al.  A Raman and far‐infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1) , 1977 .

[41]  F. D. Rosi,et al.  Compound tellurides and their alloys for peltier cooling—A review , 1972 .

[42]  D. Greenaway,et al.  Band structure of bismuth telluride, bismuth selenide and their respective alloys , 1965 .

[43]  L. Muldawer,et al.  Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys , 1960 .

[44]  D. A. Wright Thermoelectric Properties of Bismuth Telluride and its Alloys , 1958, Nature.

[45]  N. Fuschillo,et al.  Transport properties of the pseudo-binary alloy system Bi2Te3−ySey , 1959 .

[46]  C. Goodman,et al.  Chemical bonding in bismuth telluride , 1958 .