Progresses in III‐nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials

We propose to use lattice‐matched AlInN/GaN to replace the Al(Ga)N/GaN material system for III‐nitride Bragg reflectors, despite the poor material quality of AlInN reported until very recently. We report an improvement of AlInN material that allowed for successful fabrication of a microcavity light emitting diode, a distributed Bragg reflector with 99.4% reflectivity and microcavities with a quality factor over 800. These results establish state‐of‐the‐art values for III‐nitrides, and announce the future importance of AlInN in GaN‐based optoelectronics. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Bernard Beaumont,et al.  METALORGANIC VAPOR-PHASE EPITAXY-GROWN ALGAN MATERIALS FOR VISIBLE-BLIND ULTRAVIOLET PHOTODETECTOR APPLICATIONS , 1999 .

[2]  Marc Ilegems,et al.  Luminescence of Be‐ and Mg‐doped GaN , 1973 .

[3]  Satoshi Kamiyama,et al.  Recombination dynamics of localized excitons in Al1−xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy , 2003 .

[4]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[5]  T. Fujimori,et al.  Growth and characterization of AlInN on AlN template , 2004 .

[6]  H. Benisty,et al.  Method of source terms for dipole emission modification in modes of arbitrary planar structures , 1998 .

[7]  Marc Ilegems,et al.  InGaN/GaN resonant-cavity LED including an AlInN/GaN Bragg mirror , 2004 .

[8]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[9]  Kenichi Iga,et al.  Interface control of GaN/AlGaN quantum well structures in MOVPE growth , 1998 .

[10]  H. Amano,et al.  Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy , 1998 .

[11]  Yasuhiko Arakawa,et al.  Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser , 2002 .

[12]  Yen-Kuang Kuo,et al.  Band-Gap Bowing Parameter of the AlxGa1-xN Derived from Theoretical Simulation , 2002 .

[13]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[14]  J. B. Lam,et al.  Dynamics of anomalous optical transitions in Al x Ga 1 − x N alloys , 2000 .

[15]  A. Nurmikko,et al.  Stress Engineering During Metalorganic Chemical Vapor Deposition of AlGaN/GaN Distributed Bragg Reflectors , 2001 .

[16]  Hao-Chung Kuo,et al.  Characteristics of stable emission GaN-based resonant-cavity light-emitting diodes , 2004 .

[17]  R. Dingle,et al.  Luminescence of Zn‐ and Cd‐doped GaN , 1972 .

[18]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[19]  F. Kish,et al.  A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser , 2000 .

[20]  Pleun Maaskant,et al.  Experimental characterisation of GaN-based resonant cavity light emitting diodes , 2002 .

[21]  Takashi Jimbo,et al.  Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire , 2000 .

[22]  Timothy J. Drummond,et al.  AlN-GaN quarter-wave reflector stack grown by gas-source MBE on (100) GaAs , 1995 .

[23]  J. Massies,et al.  GaN and AlxGa1−xN molecular beam epitaxy monitored by reflection high-energy electron diffraction , 1997 .

[24]  Ratna Naik,et al.  Optical and electrical properties of Al1−xInxN films grown by plasma source molecular-beam epitaxy , 2001 .

[25]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[26]  Theodore D. Moustakas,et al.  High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy , 2000 .

[27]  Takashi Jimbo,et al.  MOCVD growth of high reflective GaN/AlGaN distributed Bragg reflectors , 2002 .

[28]  T. Taguchi,et al.  Temperature dependence of Stokes shift in InxGa1−xN epitaxial layers , 2003 .

[29]  Oliver Ambacher,et al.  Sub-bandgap absorption of gallium nitride determined by Photothermal Deflection Spectroscopy , 1996 .

[30]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[31]  Marc Ilegems,et al.  Crack-free fully epitaxial nitride microcavity using highly reflective AlInN∕GaN Bragg mirrors , 2005 .

[32]  Marc Ilegems,et al.  Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers , 2005 .

[33]  Joachim Piprek,et al.  Band gap bowing and refractive index spectra of polycrystalline AlxIn1−xN films deposited by sputtering , 1997 .

[34]  R. Langer,et al.  High-reflectivity GaN/GaAlN Bragg mirrors at blue/green wavelengths grown by molecular beam epitaxy , 1999 .

[35]  Pleun Maaskant,et al.  Fabrication of GaN‐Based Resonant Cavity LEDs , 2002 .

[36]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[37]  Oliver Ambacher,et al.  Optical constants of epitaxial AlGaN films and their temperature dependence , 1997 .

[38]  J. Massies,et al.  High-al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy , 2003 .

[39]  Takashi Matsuoka,et al.  Calculation of unstable mixing region in wurtzite In1−x−yGaxAlyN , 1997 .

[40]  O. Brandt,et al.  Crack-free and conductive Si-doped AlN∕GaN distributed Bragg reflectors grown on 6H-SiC(0001) , 2004 .