Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices.

Heterojunctions created from thin films of two dissimilar organic semiconductor materials [organic/organic' (O/O') heterojunctions] are an essential component of organic light emitting diode displays and lighting systems (OLEDs, PLEDs) and small molecule or polymer-based organic photovoltaic (solar cell) technologies (OPVs). O/O' heterojunctions are the site for exciton formation in OLEDs, and the site for exciton dissociation and photocurrent production in OPVs. Frontier orbital energy offsets in O/O' heterojunctions establish the excess free energy controlling rates of charge recombination and formation of emissive states in OLEDs and PLEDs. These energy offsets also establish the excess free energy which controls charge separation and the short-circuit photocurrent (J(SC) ) in OPVs, and set the upper limit for the open-circuit photopotential (V(OC) ). We review here how these frontier orbital energy offsets are determined using photoemission spectroscopies, how these energies change as a function of molecular environment, and the influence of interface dipoles on these frontier orbital energies. Recent examples of heterojunctions based on small molecule materials are shown, emphasizing those heterojunctions which are of interest for photovoltaic applications. These include heterojunctions of perylenebisimide dyes with trivalent metal phthalocyanines, and heterojunctions of titanyl phthalocyanine with C(60) , and with pentacene. Organic solar cells comprised of donor/acceptor pairs of each of these last three materials confirm that the V(OC) scales with the energy offsets between the HOMO of the donor and LUMO of the acceptor ($E_{{\rm HOMO}^{\rm D} } - E_{{\rm LUMO}^{\rm A} }$).

[1]  S. Barlow,et al.  Photoemission studies of interfaces between a tris(thieno)hexaazatriphenylene derivative and metals , 2008 .

[2]  Wilhelm T S Huck,et al.  Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes. , 2005, Nano letters.

[3]  Bernard Kippelen,et al.  Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions , 2004 .

[4]  A. Kahn,et al.  Spectroscopic study on sputtered PEDOT · PSS: Role of surface PSS layer , 2006 .

[5]  D. Schlettwein,et al.  Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines , 1995 .

[6]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[7]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[8]  K. Leo,et al.  Tunneling spectroscopy study of 3,4,9,10-perylenetetracarboxylic dianhydride on Au(100) , 2001 .

[9]  Stephen R. Forrest,et al.  High efficiency single dopant white electrophosphorescent light emitting diodesElectronic supplementary information (ESI) available: emission spectra as a function of doping concentration for 3 in CBP, as well as the absorption and emission spectra of Irppz, CBP and mCP. See http://www.rsc.org/suppd , 2002 .

[10]  C. Cramer,et al.  Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. , 2007, The journal of physical chemistry. B.

[11]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[12]  T. Kataoka,et al.  Spectroscopic evidence of strong π-π interorbital interaction in a lead-phthalocyanine bilayer film attributed to the dimer nanostructure , 2007 .

[13]  A. P. Kulkarni,et al.  High‐Performance Organic Light‐Emitting Diodes Based on Intramolecular Charge‐Transfer Emission from Donor–Acceptor Molecules: Significance of Electron‐ Donor Strength and Molecular Geometry , 2006 .

[14]  Norbert Koch,et al.  Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films , 2003 .

[15]  David J. Giesen,et al.  Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces , 2000 .

[16]  J. Tour,et al.  Experimental and theoretical identification of valence energy levels and interface dipole trends for a family of (oligo)phenylene-ethynylenethiols adsorbed on gold , 2008 .

[17]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[18]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[19]  Richard H. Friend,et al.  CHARGE- AND ENERGY-TRANSFER PROCESSES AT POLYMER/POLYMER INTERFACES : A JOINT EXPERIMENTAL AND THEORETICAL STUDY , 1999 .

[20]  Audrey M. Bowen,et al.  Photovoltaic cells from a soluble pentacene derivative , 2006 .

[21]  David S. Ginger,et al.  The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport† , 2008 .

[22]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[23]  Antoine Kahn,et al.  Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy , 2004 .

[24]  G. Malliaras,et al.  Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes , 1998 .

[25]  C. Adachi,et al.  1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. , 2002, Journal of the American Chemical Society.

[26]  R. Friend,et al.  PL and EL quenching due to thin metal films in conjugated polymers and polymer LEDs , 1997 .

[27]  N. Armstrong,et al.  Organic heterojunctions of layered perylene and phthalocyanine dyes: characterization with UV-photoelectron spectroscopy and luminescence quenching , 2009 .

[28]  R. Wightman,et al.  Electrogenerated chemiluminescence from derivatives of aluminum quinolate and quinacridones: Cross-reactions with triarylamines lead to singlet emission through triplet-triplet annihilation pathways , 2000 .

[29]  S. Ha,et al.  Commensurate growth and diminishing substrate influence in a multilayer film of a tris(thieno)hexaazatriphenylene derivative on Au(111) studied by scanning tunneling microscopy , 2008 .

[30]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[31]  J. Brédas,et al.  Quantum-Chemical Approach to Electronic Coupling: Application to Charge Separation and Charge Recombination Pathways in a Model Molecular Donor−Acceptor System for Organic Solar Cells , 2008 .

[32]  N. Peyghambarian,et al.  Photoemission spectroscopy of LiF coated Al and Pt electrodes , 1998 .

[33]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[34]  A. Heeger,et al.  Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2,5-polyphenylenevinylene , 1994 .

[35]  Nasser N Peyghambarian,et al.  Organic light-emitting diode with 20 lm/W efficiency using a triphenyldiamine side-group polymer as the hole transport layer , 1999 .

[36]  R. Measures Prospects for developing a laser based on electrochemiluminescence. , 1974, Applied optics.

[37]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[38]  R. Wysocki,et al.  Modification of indium-tin oxide electrodes with thiophene copolymer thin films: optimizing electron transfer to solution probe molecules. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[39]  W. R. Salaneck,et al.  The metal‐on‐polymer interface in polymer light emitting diodes , 1996 .

[40]  G. Collins,et al.  Ordered ultrathin films of perylenetetracarboxylic dianhydride (PTCDA) and dimethylperylenebis(dicarboximide) (Me-PTCDI) on Cu(100): Characterization of structure and surface stoichiometry by LEED, TDMS, and XPS , 1995 .

[41]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[42]  E. Hädicke,et al.  Structures of eleven perylene-3,4:9,10-bis(dicarboximide) pigments , 1986 .

[43]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[44]  J. Brédas,et al.  Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment. , 2005, Journal of the American Chemical Society.

[45]  X. Zhu,et al.  Coulomb barrier for charge separation at an organic semiconductor interface. , 2008, Physical review letters.

[46]  R. Friend,et al.  Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. , 2008, Nature materials.

[47]  Christoph J. Brabec,et al.  Physics of organic bulk heterojunction devices for photovoltaic applications , 2006 .

[48]  Stephen R. Forrest,et al.  White Organic Light‐Emitting Devices for Solid‐State Lighting , 2004 .

[49]  Kaushik Roy Choudhury,et al.  LiF as an n‐Dopant in Tris(8‐hydroxyquinoline) Aluminum Thin Films , 2008 .

[50]  C. Tang,et al.  Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes , 2001 .

[51]  Yongli Gao,et al.  Photoemission study of energy alignment at the metal/Alq3 interfaces , 2001 .

[52]  G. Hughes,et al.  Photoemission, NEXAFS and STM studies of pentacene thin films on Au(1 0 0) , 2006 .

[53]  A. Kahn,et al.  Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane , 2003 .

[54]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[55]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[56]  Antoine Kahn,et al.  Effect of electrical doping on molecular level alignment at organic–organic heterojunctions , 2003 .

[57]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[58]  A. Kahn,et al.  Controlling the work function of indium tin oxide: differentiating dipolar from local surface effects. , 2002, Journal of the American Chemical Society.

[59]  S. Forrest,et al.  Erratum: “Small molecular weight organic thin-film photodetectors and solar cells” [J. Appl. Phys. 93, 3693 (2003)] , 2004 .

[60]  Brian A. Gregg,et al.  Organic and nano-structured composite photovoltaics: An overview , 2005 .

[61]  R. Wightman,et al.  Electrochemiluminescence in low ionic strength solutions of 1,2-dimethoxyethane , 1995 .

[62]  N. Armstrong,et al.  Structure of 3,4,9,10-perylene-tetracarboxylic-dianhydride grown on reconstructed and unreconstructed Au(100) , 1999 .

[63]  M. Knupfer,et al.  Interface Fermi level pinning at contacts between PEDOT: PSS and molecular organic semiconductors. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  S. Zakeeruddin,et al.  Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. , 2007, Small.

[65]  D. Dini Electrochemiluminescence from Organic Emitters , 2005 .

[66]  R. Wightman,et al.  Effects of Solvent and Ionic Strength on the Electrochemiluminescence of 9,10-Diphenylanthracene , 1994 .

[67]  Thomas J. Meyer,et al.  Solid-State Diode-like Chemiluminescence Based on Serial, Immobilized Concentration Gradients in Mixed-Valent Poly[Ru(vbpy)3](PF6)2 Films , 1996 .

[68]  W. R. Salaneck,et al.  Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices , 1999 .

[69]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[70]  Ghassan E. Jabbour,et al.  Organic-Based Photovoltaics: Toward Low-Cost Power Generation , 2005 .

[71]  W. R. Salaneck,et al.  Characterization of the interface dipole at organic/ metal interfaces. , 2002, Journal of the American Chemical Society.

[72]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[73]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[74]  P. Sullivan,et al.  Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C60) heterojunctions , 2007 .

[75]  Klaus Müllen,et al.  Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. , 2008, Accounts of chemical research.

[76]  K. Nebesny,et al.  HOMO/LUMO Alignment at PTCDA/ZnPc and PTCDA/ClInPc Heterointerfaces Determined by Combined UPS and XPS Measurements , 1999 .

[77]  Garry Rumbles,et al.  Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices , 2008 .

[78]  P. Barbara,et al.  Spatially-Resolving Nanoscopic Structure and Excitonic-Charge-Transfer Quenching in Molecular Semiconductor Heterojunctions , 1997 .

[79]  Neal R. Armstrong,et al.  Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes , 1998 .

[80]  R. Friend,et al.  Fluorescence and Phosphorescence in Organic Materials , 2002 .

[81]  Xu,et al.  Degradation mechanism of small molecule-based organic light-emitting devices , 1999, Science.

[82]  W. R. Salaneck,et al.  Study and comparison of conducting polymer hole injection layers in light emitting devices , 2005 .

[83]  Bernard Kippelen,et al.  Interface modification of ITO thin films: organic photovoltaic cells , 2003 .

[84]  Y. Zhu,et al.  Photoemission study of the poly(3-hexylthiophene)/Au interface , 2006 .

[85]  John E. Anthony,et al.  Photovoltaics from soluble small molecules , 2007 .

[86]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[87]  Peng Wang,et al.  High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. , 2008, Nature materials.

[88]  Martin Pfeiffer,et al.  Efficient Vacuum‐Deposited Organic Solar Cells Based on a New Low‐Bandgap Oligothiophene and Fullerene C60 , 2006 .

[89]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[90]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[91]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[92]  M. Knupfer,et al.  Energy level alignment at organic/metal interfaces: Dipole and ionization potential , 2002 .

[93]  David Cahen,et al.  Electron Energetics at Surfaces and Interfaces: Concepts and Experiments , 2003 .

[94]  R. Friend,et al.  Exciton trapping at heterojunctions in polymer blends. , 2005, The Journal of chemical physics.

[95]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[96]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[97]  Princeton University,et al.  Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level , 2004 .

[98]  Richard H. Friend,et al.  ORGANIC PHOTOVOLTAIC DEVICES , 2001 .

[99]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[100]  Y. Zhu,et al.  Investigation of a polythiophene interface using photoemission spectroscopy in combination with electrospray thin-film deposition , 2006 .

[101]  Bernard Kippelen,et al.  Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing , 2007 .

[102]  T. Marks,et al.  High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells , 2008 .

[103]  William R. Salaneck,et al.  Influence of the electrode work function on the energy level alignment at organic-organic interfaces , 2007 .

[104]  N. Armstrong,et al.  Guest emission processes in doped organic light-emitting diodes: Use of phthalocyanine and naphthalocyanine near-IR dopants , 2003 .

[105]  M. Carducci,et al.  Ordered thin films of perylenetetracarboxylicdianhydride-bisimide and bis-(N-alkyl)-quinacridone dyes , 2000 .

[106]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[107]  Kristian O. Sylvester-Hvid Two-dimensional simulations of CuPc-PCTDA solar cells: the importance of mobility and molecular pi stacking. , 2006, The journal of physical chemistry. B.

[108]  R. Nolte,et al.  The relationship between nanoscale architecture and function in photovoltaic multichromophoric arrays as visualized by Kelvin probe force microscopy. , 2008, Journal of the American Chemical Society.

[109]  O. Inganäs,et al.  Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative , 2004 .

[110]  Antje Vollmer,et al.  Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. , 2008, Nature materials.

[111]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[112]  Juan Bisquert,et al.  Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells , 2004 .

[113]  Chen Wang,et al.  On the topography multiplicity of non-planar titanyl (IV) phthalocyanine molecules and the STM imaging mechanism , 2008 .

[114]  K. Seki,et al.  Angle resolved UV photoelectron spectra of titanyl phthalocynine monolayer film on graphite , 2007 .

[115]  Brian A. Gregg,et al.  The Photoconversion Mechanism of Excitonic Solar Cells , 2005 .

[116]  I. Gould,et al.  Dynamics of Bimolecular Photoinduced Electron-Transfer Reactions , 1996 .

[117]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[118]  M. Knupfer,et al.  Consistent experimental determination of the charge neutrality level and the pillow effect at metal/organic interfaces , 2007 .

[119]  M. Archer,et al.  Photogalvanic Cells II . Current‐Voltage and Power Characteristics , 1977 .

[120]  Neil C. Greenham,et al.  A microscopic model for the behavior of nanostructured organic photovoltaic devices , 2007 .

[121]  R. Wightman,et al.  Solid State Electrochemically Generated Luminescence Based on Serial Frozen Concentration Gradients of RuIII/II and RuII/I Couples in a Molten Ruthenium 2,2‘-Bipyridine Complex , 1997 .

[122]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[123]  Jenny Nelson,et al.  Hybrid polymer-metal oxide thin films for photovoltaic applications{ , 2007 .

[124]  R. Rousseau,et al.  Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. , 2005, Physical review letters.

[125]  J. Durrant,et al.  Charge recombination in CuPc/PTCDA thin films. , 2005, The journal of physical chemistry. B.

[126]  K. Leo,et al.  Small-molecule solar cells—status and perspectives , 2008, Nanotechnology.

[127]  K. Walzer,et al.  STM and STS investigation of ultrathin tin phthalocyanine layers adsorbed on HOPG(0001) and Au(111) , 2001 .

[128]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[129]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[130]  W. R. Salaneck,et al.  Interfacial chemistry of Alq3 and LiF with reactive metals , 2001 .

[131]  C. Lindstrom,et al.  Delocalized electron resonance at the alkanethiolate self-assembled monolayer/Au(111) interface. , 2006, The Journal of chemical physics.

[132]  Yongli Gao,et al.  Emission process in bilayer organic light emitting diodes , 1998 .

[133]  Christoph J. Brabec,et al.  Solution-Processed Organic Solar Cells , 2008 .

[134]  Norbert Koch,et al.  Organic electronic devices and their functional interfaces. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[135]  K. Nebesny,et al.  Heterojunctions formed from phthalocyanine and perylene thin films: photoelectrochemical characterization , 1991 .

[136]  N. Koch,et al.  The Effect of Fluorination on Pentacene/Gold Interface Energetics and Charge Reorganization Energy , 2007 .

[137]  S. Krause,et al.  Determination of transport levels of organic semiconductors by UPS and IPS , 2008 .

[138]  O. V. Molodtsova,et al.  Electronic properties of the organic semiconductor interfaces CuPc∕C60 and C60∕CuPc , 2006 .

[139]  R. Wightman,et al.  Rate-determining step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2'-bipyridyl)ruthenium(II) , 2004 .

[140]  D. Ginley,et al.  Polymer—perylene diimide heterojunction solar cells , 2002 .

[141]  N. Koch,et al.  Adsorption-induced intramolecular dipole: correlating molecular conformation and interface electronic structure. , 2008, Journal of the American Chemical Society.

[142]  S. Barlow,et al.  Synthesis, ionisation potentials and electron affinities of hexaazatrinaphthylene derivatives. , 2007, Chemistry.

[143]  Wei Chen,et al.  Molecular Orientation-Dependent Ionization Potential of Organic Thin Films , 2008 .

[144]  S. Forrest,et al.  Organic solar cells with sensitivity extending into the near infrared , 2005 .

[145]  Fernando Flores,et al.  Doping-induced realignment of molecular levels at organic–organic heterojunctions , 2006 .

[146]  Nasser N Peyghambarian,et al.  Energy and charge transfer in organic light-emitting diodes: A soluble quinacridone study , 1999 .

[147]  Juan Bisquert,et al.  Physical electrochemistry of nanostructured devices. , 2008, Physical chemistry chemical physics : PCCP.

[148]  W. J. Albery,et al.  Optimum efficiency of photogalvanic cells for solar energy conversion , 1977, Nature.

[149]  Stephen R. Forrest,et al.  Introduction: Organic Electronics and Optoelectronics , 2007 .

[150]  Martin Pfeiffer,et al.  Interface electronic structure of organic semiconductors with controlled doping levels , 2001 .

[151]  D. Zahn,et al.  Electronic and vibrational spectroscopies applied to organic/inorganic interfaces. , 2007, Chemical reviews.

[152]  W. R. Salaneck,et al.  Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: A mini-review and some new results , 2001 .

[153]  G. Bazan,et al.  Long‐Lifetime Polymer Light‐Emitting Electrochemical Cells , 2007 .

[154]  D. Lichtenberger,et al.  Electron Transfer Parameters of Triisopropylsilylethynyl-Substituted Oligoacenes , 2008 .

[155]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[156]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[157]  Donal D. C. Bradley,et al.  Hybrid Solar Cells from a Blend of Poly(3‐hexylthiophene) and Ligand‐Capped TiO2 Nanorods , 2008 .

[158]  N. Armstrong,et al.  Ultrathin Films of Perylenedianhydride and Perylenebis(dicarboximide) Dyes on (001) Alkali Halide Surfaces , 1998 .

[159]  Wei Zhao,et al.  Decamethylcobaltocene as an efficient n-dopant in organic electronic materials and devices , 2008 .

[160]  R. Wightman,et al.  Light-emitting electrochemical processes. , 2003, Annual review of physical chemistry.

[161]  G. Klebe,et al.  Crystallochromy as a solid-state effect: correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments , 1989 .

[162]  M. Knupfer,et al.  Direct and inverse photoemission spectroscopy studies of potassium intercalated films of two organic semiconductors , 2003 .

[163]  Richard H. Friend,et al.  The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers , 2002 .

[164]  Amy L. Graham,et al.  Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV−Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols , 2003 .

[165]  D. Milliron,et al.  Organic semiconductor interfaces: electronic structure and transport properties , 2000 .

[166]  William R. Salaneck,et al.  The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films , 2003 .

[167]  C. D. England,et al.  RHEED and optical characterization of ordered multilayers of phthalocyanine⧸C60 and phthalocyanine/perylene-tetracarboxylicdianhydride (PTCDA) , 1994 .

[168]  Mark A. Ratner,et al.  Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes , 2000 .

[169]  P. Barbara,et al.  Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. , 2008, Journal of the American Chemical Society.

[170]  R. Friend,et al.  Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends: Balancing Charge Generation and Separation , 2007 .

[171]  Rudolph A. Marcus,et al.  On the Theory of Chemiluminescent Electron‐Transfer Reactions , 1965 .

[172]  High efficiency flexible ITO-free polymer/fullerene photodiodes. , 2006, Physical chemistry chemical physics : PCCP.

[173]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[174]  R. H. Friend,et al.  Efficient light-emitting diodes based on polymers with high electron affinities , 1993, Nature.

[175]  Klaus Meerholz,et al.  Influence of the anodic work function on the performance of organic solar cells. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[176]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[177]  R. Wightman,et al.  Electrogenerated Chemiluminescence from Phosphorescent Molecules Used in Organic Light-Emitting Diodes , 2002 .

[178]  S. Olthof,et al.  Efficient p-i-n type organic solar cells incorporating 1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material , 2008 .

[179]  Kazuhiko Seki,et al.  Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy , 1998 .

[180]  T. Jones,et al.  Morphology, structure and photophysics of thin films of perylene-3,4,9,10-tetracarboxylic dianhydride , 2002 .

[181]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[182]  Princeton University,et al.  Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level , 2004 .

[183]  S. Forrest,et al.  Controlled growth of a molecular bulk heterojunction photovoltaic cell , 2004 .

[184]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[185]  Weiying Gao,et al.  Energy level alignment at organic heterojunctions : Role of the charge neutrality level , 2005 .

[186]  Antoine Kahn,et al.  Charge-separation energy in films of π-conjugated organic molecules , 2000 .

[187]  A. Bard,et al.  Organic donor/acceptor heterojunction photovoltaic devices based on zinc phthalocyanine and a liquid crystalline perylene diimide , 2004 .

[188]  Charlotte K. Williams,et al.  Charge recombination in organic photovoltaic devices with high open-circuit voltages. , 2008, Journal of the American Chemical Society.

[189]  N. Armstrong,et al.  Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers , 2008 .

[190]  K. Müllen,et al.  Tunneling through nanographene stacks , 2006 .

[191]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[192]  N. Armstrong,et al.  Titanyl phthalocyanine/C60 heterojunctions: Band-edge offsets and photovoltaic device performance , 2008 .

[193]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[194]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[195]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[196]  R. Lunt,et al.  Growth of an Ordered Crystalline Organic Heterojunction , 2007 .

[197]  C. Lindstrom,et al.  Electron transport across the alkanethiol self-assembled monolayer/Au(111) interface: role of the chemical anchor. , 2005, The journal of physical chemistry. B.

[198]  S. Shaheen,et al.  Dependence of band offset and open-circuit voltage on the interfacial interaction between TiO2 and carboxylated polythiophenes. , 2006, The journal of physical chemistry. B.

[199]  Fan Yang,et al.  Photocurrent generation in nanostructured organic solar cells. , 2008, ACS nano.

[200]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[201]  Daniel Moses,et al.  Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials , 2008 .

[202]  R. Friend,et al.  Electroluminescence from multilayer conjugated polymer devices: Spatial control of exciton formation and emission , 1992 .

[203]  Neal R. Armstrong,et al.  Phosphonic Acid Modification of Indium−Tin Oxide Electrodes: Combined XPS/UPS/Contact Angle Studies† , 2008 .

[204]  Vincenzo Palermo,et al.  Photovoltaic charge generation visualized at the nanoscale: a proof of principle. , 2008, Journal of the American Chemical Society.

[205]  Stephen R. Forrest,et al.  High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials , 2000 .

[206]  D. Zahn,et al.  The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission , 2006 .

[207]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[208]  Ching Wan Tang,et al.  Organic electroluminescent devices with improved stability , 1996 .

[209]  N. Koch,et al.  Structural and electronic properties of pentacene-fullerene heterojunctions , 2008 .

[210]  W. A. Gambling,et al.  Electron drift mobility and electroluminescent efficiency of tris(8-hydroxyquinolinolato) aluminum , 1999 .

[211]  Paul F. Barbara,et al.  Impact of Solvent Vapor Annealing on the Morphology and Photophysics of Molecular Semiconductor Thin Films , 1998 .

[212]  Kazuhiro Saito,et al.  Control of molecular orientation of organic p–i–n structures by using molecular templating effect at heterointerfaces , 2007 .

[213]  Michele L. Anderson,et al.  PHOTOELECTRON AND OPTICAL SPECTROSCOPIC INVESTIGATIONS OF THE ELECTRONIC-STRUCTURE OF OLIGO(P-PHENYLENEVINYLENE)S IN THE SOLID-STATE , 1995 .

[214]  Norbert Koch,et al.  Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone , 2006 .

[215]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[216]  Hirohiko Fukagawa,et al.  The Role of the Ionization Potential in Vacuum‐Level Alignment at Organic Semiconductor Interfaces , 2007 .

[217]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[218]  K. Müllen,et al.  Electrical field-induced alignment of nonpolar hexabenzocoronene molecules into columnar structures on highly oriented pyrolitic graphite investigated by STM and SFM , 2008 .

[219]  Brian A. Gregg,et al.  Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation , 2003 .

[220]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[221]  M. Álvarez,et al.  Rapid generation of protein aerosols and nanoparticles via SAW atomisation , 2008 .

[222]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[223]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[224]  K. Nebesny,et al.  Determination of frontier orbital alignment and band bending at an organic semiconductor heterointerface by combined x-ray and ultraviolet photoemission measurements , 1998 .

[225]  W. R. Salaneck,et al.  Ultraviolet light–ozone treatment of poly(3,4-ethylenedioxy-thiophene)-based materials resulting in increased work functions , 2006 .

[226]  A. Bard,et al.  Electrogenerated Chemiluminescence XXIII. On the Operation and Lifetime of ECL Devices , 1975 .

[227]  A. Kahn,et al.  Energy level alignment at interfaces of organic semiconductor heterostructures , 1998 .