Stability analysis of polytopic Discontinuous Galerkin approximations of the Stokes problem with applications to fluid-structure interaction problems

We present a stability analysis of the Discontinuous Galerkin method on polygonal and polyhedral meshes (PolyDG) for the Stokes problem. In particular, we analyze the discrete inf-sup condition for different choices of the polynomial approximation order of the velocity and pressure approximation spaces. To this aim, we employ a generalized inf-sup condition with a pressure stabilization term. We also prove a priori hp-version error estimates in suitable norms. We numerically check the behaviour of the inf-sup constant and the order of convergence with respect to the mesh configuration, the mesh-size, and the polynomial degree. Finally, as a relevant application of our analysis, we consider the PolyDG approximation for a fluid-structure interaction problem and we numerically explore the stability properties of the method.

[1]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[2]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[3]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[4]  Alfio Quarteroni,et al.  A patient-specific aortic valve model based on moving resistive immersed implicit surfaces , 2017, Biomechanics and Modeling in Mechanobiology.

[5]  Benedikt Schott,et al.  A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact , 2018, International Journal for Numerical Methods in Engineering.

[6]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[7]  Andrea Toselli,et al.  Mixed HP-finite element approximations on geometric edge and boundary layer meshes in three dimensions , 2003, Numerische Mathematik.

[8]  Alexandre Ern,et al.  A discontinuous skeletal method for the viscosity-dependent Stokes problem , 2015 .

[9]  Seizo Tanaka,et al.  Discontinuous Galerkin Methods with Nodal and Hybrid Modal/Nodal Triangular, Quadrilateral, and Polygonal Elements for Nonlinear Shallow Water Flow , 2014 .

[10]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[11]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[12]  Yuri Bazilevs,et al.  Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method , 2020 .

[13]  Lucy T. Zhang Immersed finite element method for fluid-structure interactions , 2007 .

[14]  Ram P. Ghosh,et al.  Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid–structure interaction analysis , 2020, Biomechanics and Modeling in Mechanobiology.

[15]  Chunning Ji,et al.  Large scale simulation of red blood cell aggregation in shear flows. , 2013, Journal of biomechanics.

[16]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[17]  P. Houston,et al.  High–order Discontinuous Galerkin Methods on Polyhedral Grids for Geophysical Applications: Seismic Wave Propagation and Fractured Reservoir Simulations , 2021, Polyhedral Methods in Geosciences.

[18]  Paola F. Antonietti,et al.  High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[19]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[20]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[21]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[22]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[23]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[24]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[25]  G. Vacca,et al.  Equilibrium analysis of an immersed rigid leaflet by the virtual element method , 2020, Mathematical Models and Methods in Applied Sciences.

[26]  Andrea Toselli,et al.  Stabilized hp-DGFEM for Incompressible Flow , 2003 .

[27]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[28]  Michael Dumbser,et al.  Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity , 2018, J. Comput. Phys..

[29]  S'ebastien Court,et al.  A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid , 2015, 1502.03953.

[30]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[31]  Andrea Toselli,et al.  HP DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE STOKES PROBLEM , 2002 .

[32]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[33]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[34]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[35]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[36]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[37]  Boyce E. Griffith,et al.  Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions , 2012, International journal for numerical methods in biomedical engineering.

[38]  Michael Dumbser,et al.  Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: Spectral analysis and computational results , 2016, Numer. Linear Algebra Appl..

[39]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[40]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[41]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.

[42]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[43]  Axel Klawonn,et al.  Computational homogenization with million-way parallelism using domain decomposition methods , 2019, Computational Mechanics.

[44]  Christoph Lehrenfeld,et al.  An Eulerian finite element method for PDEs in time-dependent domains , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[45]  Christian Vergara,et al.  Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids , 2019, Finite Elements in Analysis and Design.

[46]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[47]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[48]  Najib Bouaanani,et al.  Effects of fluid–structure interaction modeling assumptions on seismic floor acceleration demands within gravity dams , 2014 .

[49]  R. Picelli,et al.  Topology optimization of binary structures under design-dependent fluid-structure interaction loads , 2020, Structural and Multidisciplinary Optimization.

[50]  Jérôme Droniou,et al.  The Hybrid High-Order Method for Polytopal Meshes , 2020 .

[51]  Emmanuil H. Georgoulis,et al.  hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes , 2016, SIAM J. Sci. Comput..

[52]  Erik Burman,et al.  A Nitsche-based formulation for fluid-structure interactions with contact , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[53]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[54]  Daniele A. Di Pietro,et al.  Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations , 2015, Comput. Methods Appl. Math..

[55]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[56]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[57]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[58]  A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes , 2020, International Journal for Numerical Methods in Fluids.

[59]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[60]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[61]  Emmanuil H. Georgoulis,et al.  hp-Version discontinuous Galerkin methods on essentially arbitrarily-shaped elements , 2019, Math. Comput..

[62]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[63]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[64]  Ramon Codina,et al.  Fluid structure interaction by means of variational multiscale reduced order models , 2020, International Journal for Numerical Methods in Engineering.

[65]  J. Guermond,et al.  Finite Elements II , 2021 .

[66]  Sebastian Grimberg,et al.  Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction , 2019, International Journal for Numerical Methods in Fluids.

[67]  Dietrich Braess,et al.  Approximation on Simplices with Respect to Weighted Sobolev Norms , 2000 .

[68]  Ramji Kamakoti,et al.  Fluid–structure interaction for aeroelastic applications , 2004 .

[69]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[70]  A. Ern,et al.  An unfitted hybrid high-order method for the Stokes interface problem , 2020, IMA Journal of Numerical Analysis.

[71]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[72]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..