Interactive Curve Constrained Functional Maps

Functional maps have gained popularity as a versatile framework for representing intrinsic correspondence between 3D shapes using algebraic machinery. A key ingredient for this framework is the ability to find pairs of corresponding functions (typically, feature descriptors) across the shapes. This is a challenging problem on its own, and when the shapes are strongly non‐isometric, nearly impossible to solve automatically. In this paper, we use feature curve correspondences to provide flexible abstractions of semantically similar parts of non‐isometric shapes. We design a user interface implementing an interactive process for constructing shape correspondence, allowing the user to update the functional map at interactive rates by introducing feature curve correspondences. We add feature curve preservation constraints to the functional map framework and propose an efficient numerical method to optimize the map with immediate feedback. Experimental results show that our approach establishes correspondences between geometrically diverse shapes with just a few clicks.

[1]  Jane McGonigal,et al.  Keynote: Jane McGonigal , 2012, ACM Transactions on Graphics.

[2]  Davide Eynard,et al.  Coupled Functional Maps , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[3]  Tino Weinkauf,et al.  Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods , 2009 .

[4]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[5]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[6]  Konrad Polthier,et al.  Smooth feature lines on surface meshes , 2005, SGP '05.

[7]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[8]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[9]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[10]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[11]  Frank B. ter Haar,et al.  SHape REtrieval Contest (SHREC) 2008 , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[12]  Justin Solomon,et al.  Numerical Algorithms - Methods for Computer Vision, Machine Learning, and Graphics , 2015 .

[13]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[14]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[15]  Mirela Ben-Chen,et al.  Deblurring and Denoising of Maps between Shapes , 2017, Comput. Graph. Forum.

[16]  Hans-Peter Seidel,et al.  Approximate 3D Partial Symmetry Detection Using Co-occurrence Analysis , 2015, 2015 International Conference on 3D Vision.

[17]  Maks Ovsjanikov,et al.  Informative Descriptor Preservation via Commutativity for Shape Matching , 2017, Comput. Graph. Forum.

[18]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[19]  Nancy Argüelles,et al.  Author ' s , 2008 .

[20]  Kouki Watanabe,et al.  Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.

[21]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[22]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Leif Kobbelt,et al.  Feature Curve Co‐Completion in Noisy Data , 2018, Comput. Graph. Forum.

[24]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[25]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[26]  Davide Eynard,et al.  Multimodal Manifold Analysis by Simultaneous Diagonalization of Laplacians , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[28]  Hans-Peter Seidel,et al.  Fast and robust detection of crest lines on meshes , 2005, SPM '05.

[29]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[30]  J. Richard Dunn,et al.  Martin Ralph Brittan , 2007, Copeia.

[31]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[32]  Guillermo Sapiro,et al.  Sparse Modeling of Intrinsic Correspondences , 2012, Comput. Graph. Forum.

[33]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[34]  Dirk Roose,et al.  Detection of closed sharp edges in point clouds using normal estimation and graph theory , 2007, Comput. Aided Des..

[35]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[36]  Leif Kobbelt,et al.  OpenFlipper: An Open Source Geometry Processing and Rendering Framework , 2010, Curves and Surfaces.

[37]  Leonidas J. Guibas,et al.  Stable Region Correspondences Between Non‐Isometric Shapes , 2016, Comput. Graph. Forum.

[38]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[39]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Shi-Min Hu,et al.  Robust Feature Classification and Editing , 2007, IEEE Transactions on Visualization and Computer Graphics.

[41]  Maks Ovsjanikov,et al.  Improved Functional Mappings via Product Preservation , 2018, Comput. Graph. Forum.

[42]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[43]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[44]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Mirela Ben-Chen,et al.  Reversible Harmonic Maps between Discrete Surfaces , 2018, ACM Trans. Graph..