Fingerprint classification based on subclass analysis using multiple templates of support vector machines

Fingerprint classification reduces the searching time of an automated fingerprint identification system. Since fingerprints have properties of intra-class diversities and inter-class similarities, the ambiguous example causes a difficult problem in the fingerprint classification. In order to address the problem, we have analyzed fingerprints' subclasses with multiple decision templates. It clusters the soft outputs of support vector machines (SVMs) into several sub-classes using the self-organizing maps, and estimates a localized template for each sub-class. For an input fingerprint, the proposed method matches the output vector of SVMs to each template and finally categorizes the sample into the class of the most similar template. Experimental results on the FingerCode dataset demonstrate the effectiveness of the subclass-based approach compared with previous methods.

[1]  Anil K. Jain,et al.  Fingerprint classification , 1996, Pattern Recognit..

[2]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[4]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[5]  Jun Li,et al.  Combining singular points and orientation image information for fingerprint classification , 2008, Pattern Recognit..

[6]  Adnan Amin,et al.  Fingerprint classification: a review , 2004, Pattern Analysis and Applications.

[7]  Kuo-Chin Fan,et al.  A new model for fingerprint classification by ridge distribution sequences , 2002, Pattern Recognit..

[8]  Josef Kittler,et al.  Sum Versus Vote Fusion in Multiple Classifier Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[10]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[11]  Anil K. Jain,et al.  Is there any texture in the image? , 1996, Pattern Recognit..

[12]  Yuan Yao,et al.  Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines , 2003, Pattern Recognit..

[13]  Sung-Bae Cho,et al.  Fingerprint classification using one-vs-all support vector machines dynamically ordered with naive Bayes classifiers , 2008, Pattern Recognit..

[14]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Craig I. Watson,et al.  PCASYS- A Pattern-Level Classification Automation System for Fingerprints | NIST , 1995 .

[16]  Jan A. Van Mieghem,et al.  Subclass Pattern Recognition: A Maximin Correlation Approach , 1995 .

[17]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[18]  Cor J. Veenman,et al.  The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Kai Huang,et al.  Fingerprint Classification Based on Extraction and Analysis of Singularities and Pseudoridges , 2001, VIP.

[20]  Ludmila I. Kuncheva,et al.  Using measures of similarity and inclusion for multiple classifier fusion by decision templates , 2001, Fuzzy Sets Syst..

[21]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[22]  ChoSung-Bae,et al.  Fingerprint classification based on subclass analysis using multiple templates of support vector machines , 2010, IDA 2010.

[23]  Andrew W. Senior,et al.  A Combination Fingerprint Classifier , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[25]  Josef Kittler,et al.  Combining classifiers: A theoretical framework , 1998, Pattern Analysis and Applications.

[26]  Sung-Bae Cho,et al.  Multiple Decision Templates with Adaptive Features for Fingerprint Classification , 2007, Int. J. Pattern Recognit. Artif. Intell..

[27]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[28]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[29]  Xiaojun Qi,et al.  Incorporating multiple SVMs for automatic image annotation , 2007, Pattern Recognit..

[30]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[33]  Fernando Pérez-Cruz,et al.  Multi-class support vector machines: a new approach , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..