Potentiality of Yeasts in the Direct Conversion of Starchy Materials to Ethanol and Its Relevance in the New Millennium

In recent years, the use of renewable and abundantly available starchy and cellulosic materials for industrial production of ethanol is gaining importance, in view of the fact, that ethanol is one of the most prospective future motor fuels, that can be expected to replace fossil fuels, which are fast depleting in the world scenario. Although, the starch and the starchy substrates could be converted successfully to ethanol on industrial scales by the use of commercial amylolytic enzymes and yeast fermentation, the cost of production is rather very high. This is mainly due to the non-enzymatic and enzymatic conversion (gelatinization, liquefaction and saccharification) of starch to sugars, which costs around 20 % of the cost of production of ethanol from starch. In this context, the use of amylolytic yeasts, that can directly convert starch to ethanol by a single step, are potentially suited to reduce the cost of production of ethanol from starch. T. Satyanarayana, G. Kunze (eds.), Yeast Biotechnology: Diversity and Applications, 515 DOI: 10.1007/978-1-4020-8292-4_24, © Springer Science + Business Media B.V. 2009 516 L.V.A. Reddy et al. Research advances made in this direction have shown encouraging results, both in terms of identifying the potentially suited yeasts for the purpose and also their economic ethanol yields. This chapter focuses on the types of starch and starchy substrates and their digestion to fermentable sugars, optimization of fermentation conditions to ethanol from starch, factors that affect starch fermentation, potential amylolytic yeasts which can directly convert starch to ethanol, genetic improvement of these yeasts for better conversion efficiency and their future economic prospects in the new millennium.

[1]  L. I. Figueroa,et al.  Interspecific protoplast fusion of the Baker's yeast Saccharomyces cerevisiae and Saccharomyces diastaticus , 1984, Biotechnology Letters.

[2]  Henry Tauber,et al.  Methods of Enzymology. , 1956 .

[3]  P. Galzy,et al.  Amylase activity ofTorulopsis ingeniosa Di Menna , 2008, Folia Microbiologica (Prague).

[4]  D. Inlow,et al.  Fermentation of corn starch to ethanol with genetically engineered yeast , 1988, Biotechnology and bioengineering.

[5]  D. Baulcombe,et al.  Secretion of a wheat α-amylase expressed in yeast , 1984, Nature.

[6]  S. Suye,et al.  Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers , 2001, Journal of Industrial Microbiology and Biotechnology.

[7]  F. Kobayashi,et al.  Saccharification and alcohol fermentation in starch solution of steam-exploded potato , 1998, Applied biochemistry and biotechnology.

[8]  S. C. Basappa,et al.  Direct fermentation of cassava starch to ethanol by mixed cultures of Endomycopsis fibuligera and Zymomonas mobilis: Synergism and limitations , 1996, Biotechnology Letters.

[9]  W. M. Fogarty,et al.  Thermostable extracellular α-amylase and α-glucosidase ofLipomyces starkeyi , 1985, Applied Microbiology and Biotechnology.

[10]  H. Verachtert,et al.  Enhanced production of extracellular α-amylase and glucoamylase by amylolytic yeasts using β-cyclodextrin as carbon source , 2004, Applied Microbiology and Biotechnology.

[11]  P. Galzy,et al.  Amylase activity inPichia polymorpha , 2008, Folia Microbiologica.

[12]  F. Clementi,et al.  Production of amylase(s) by Schwanniomyces castellii and Endomycopsis fibuligera , 2004, Antonie van Leeuwenhoek.

[13]  M. Barney,et al.  Use of Spheroplast Fusion and Genetic Transformation to Introduce Dextrin Utilization intoSaccharomyces Uvarum , 1980 .

[14]  B. Saha,et al.  Behaviour of Endomycopsis fibuligera glucoamylase towards raw starch , 1983 .

[15]  G. Stewart,et al.  Current developments in yeast research , 1981 .

[16]  W. M. Ingledew,et al.  Protoplast fusion in the yeast, Schwanniomyces alluvius , 1982, Molecular and General Genetics MGG.

[17]  J. A. Barnett,et al.  Starch utilization by yeasts: mutants resistant of carbon catabolite repression , 1984, Current Genetics.

[18]  I. S. Pretorius,et al.  Primary structure and regulation of a glucoamylase-encoding gene (STA2) in Saccharomyces diastaticus. , 1991, Gene.

[19]  S. C. Basappa,et al.  Selection and Characterization of Endomycopsis fibuligera Strains for One‐step Fermentation of Starch to Ethanol , 1993 .

[20]  J. Tamang,et al.  Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation. , 2005, International journal of food microbiology.

[21]  F. Giesbrecht,et al.  Effect of Lye Peeling Conditions on Phenolic Destruction, Starch Hydrolysis, and Carotene Loss in Sweet Potatoes , 1982 .

[22]  I. Spencer‐Martins Extracellular Isoamylase Produced by the Yeast Lipomyces kononenkoae , 1982, Applied and environmental microbiology.

[23]  B. A. Cantwell,et al.  Molecular cloning and characterization of a Candida tsukubaensis α-glucosidase gene in the yeast Saccharomyces cerevisiae , 1991, Current Genetics.

[24]  Performance of coimmobilized yeast and amyloglucosidase in a fluidized bed reactor for fuel ethanol production , 1997 .

[25]  G. Stewart The genetic manipulation of industrial yeast strains , 1981 .

[26]  R. Amutha,et al.  Production of ethanol from liquefied cassava starch using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. , 2001, Journal of bioscience and bioengineering.

[27]  Harald Wilhelm Walter Roper,et al.  Renewable Raw Materials in Europe — Industrial Utilisation of Starch and Sugar [1] , 2002 .

[28]  W. M. Ingledew,et al.  Starch hydrolysis by derepressed mutants of Schwanniomyces castellii , 1983, Biotechnology Letters.

[29]  J. E. Mcghee,et al.  Continuous bioconversion of starch to ethanol by calcium-alginate immobilized enzymes and yeasts , 1984 .

[30]  J. Bemiller,et al.  Starch : chemistry and technology , 2009 .

[31]  K. Kainuma,et al.  Alcohol fermentation of corn starch digested by Chalara paradoxa amylase without cooking , 1987, Biotechnology and bioengineering.

[32]  S. Jobling Improving starch for food and industrial applications. , 2004, Current opinion in plant biology.

[33]  L. B. Lockwood,et al.  Starch Hydrolysis and Fermentation by the Yeast Endomycopsis Fibuliger , 1944, Journal of Bacteriology.

[34]  Y Fujio,et al.  Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor. , 1985, Biotechnology and bioengineering.

[35]  S. Oliver,et al.  Molecular and genetic approaches to alcohol biotechnology in Brazil , 1987 .

[36]  R. Bothast,et al.  Biotechnological processes for conversion of corn into ethanol , 2005, Applied Microbiology and Biotechnology.

[37]  S. Soni,et al.  Production of α-amylase by Saccharomycopsis fibuligera (Syn. Endomycopsis fibuligera) , 1987 .

[38]  M. Dostálek,et al.  Mixed culture of Saccharomycopsis fibuliger and Zymomonas mobilis on starch-use of oxygen as a regulator , 1983, European journal of applied microbiology and biotechnology.

[39]  H. Verachtert,et al.  Direct alcoholic fermentation of starchy biomass using amylolytic yeast strains in batch and immobilized cell systems , 2004, Applied Microbiology and Biotechnology.

[40]  P. Galzy,et al.  Influence of culture conditions on the cell yield and amylases biosynthesis in continuous culture by Schwanniomyces castellii , 1987, Archives of Microbiology.

[41]  S. O. Olatope,et al.  Studies on an amylolytic strain of Saccharomyces cerevisiae isolated from yam tuber , 1996, Journal of basic microbiology.

[42]  I. Pretorius,et al.  Characterization of a novel α-amylase from Lipomyces kononenkoae and expression of its gene (LKA1) in Saccharomyces cerevisiae , 1995, Current Genetics.

[43]  S. Ueda,et al.  Production of ethanol from raw cassava starch by a nonconventional fermentation method , 1981 .

[44]  F. Tomita,et al.  Ethanol production from raw starch by simultaneous fermentation using Schizosaccharomyces pombe and a raw starch saccharifying enzyme from Corticium rolfsii , 1991 .

[45]  S. Ueda,et al.  Alcoholic Fermentation of Raw Starch without Cooking by Using Black-koji Amylase , 1980 .

[46]  T. Ghose,et al.  Studies on immobilized Saccharomyces cerevisiae. III. Physiology of growth and metabolism on various supports , 1982, Biotechnology and bioengineering.

[47]  H. Verachtert,et al.  Potentialities and limitations of direct alcoholic fermentation of starchy material with amylolytic yeasts , 2004, Applied Microbiology and Biotechnology.

[48]  J. Bouwkamp,et al.  Use of Heat Treatments for Saccharification of Sweet Potato Mashes , 1986 .

[49]  C. Laluce,et al.  New Amylolytic Yeast Strains for Starch and Dextrin Fermentation , 1988, Applied and environmental microbiology.

[50]  Keun Kim,et al.  The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating , 1996, Applied biochemistry and biotechnology.

[51]  M. Goto,et al.  A novel raw-starch-digesting yeast α-amylase from Lipomyces starkeyi HN-606 , 1992 .

[52]  M. Kenichi,et al.  Expression of the human salivary α-amylase gene in yeast and characterization of the secreted protein , 1986 .

[53]  B. K. Lonsane,et al.  Simultaneous Solid Phase Fermentation and Saccharification of Cassava Fibrous Residue for Production of Ethanol , 1988 .

[54]  W. Hsu,et al.  Cloning and Expression of a Schwanniomyces occidentalis α-Amylase Gene in Saccharomyces cerevisiae , 1989 .

[55]  M. Vanoni,et al.  Biochemical and immunological characterization of the STA2-encoded extracellular glucoamylase from saccharomyces diastaticus. , 1986, Archives of biochemistry and biophysics.

[56]  H. Bussey,et al.  A DEX gene conferring production of extracellular amyloglucosidase on yeast. , 1985, Gene.

[57]  W. M. Ingledew,et al.  Schwanniomyces: SCP and ethanol from starch , 1982, Biotechnology Letters.

[58]  W. M. Ingledew,et al.  Interspecific protoplast Fusion of Schwanniomyces yeasts , 1983, Biotechnology Letters.

[59]  S. Schwimmer,et al.  Starches and their derivatives as adsorbents for malt alpha-amylase. , 1949, Journal of Biological Chemistry.

[60]  Akihiko Kondo,et al.  Direct Production of Ethanol from Raw Corn Starch via Fermentation by Use of a Novel Surface-Engineered Yeast Strain Codisplaying Glucoamylase and α-Amylase , 2004, Applied and Environmental Microbiology.

[61]  R. Bothast,et al.  Integrated process for ammonia inactivation of aflatoxin-contaminated corn and ethanol fermentation , 1982, Applied and environmental microbiology.

[62]  B. Svensson,et al.  Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. , 1993, The Journal of biological chemistry.

[63]  C. A. Reddy,et al.  Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast andSaccharomycescerevisiae , 2005, Biotechnology Letters.

[64]  Hubert Verachtert,et al.  Yeast: Biotechnology and Biocatalysis , 1989 .

[65]  G. Stewart,et al.  Genetic and Biochemical Studies on Yeast Strains Able to Utilize Dextrins , 1978 .

[66]  H. Ebertová Amylolytic enzymes of Endomycopsis capsularis. II. A study of the properties of isolated alpha-amylase, amyloglucosidase and maltase-transglucosidase. , 1966, Folia microbiologica.

[67]  R. P. Bates,et al.  Drum Drying of Tropical Sweetpotatoes , 1985 .

[68]  H. Fuwa Enzymic Degradation of Starch Granules , 1982 .

[69]  H. Verachtert,et al.  Effect of medium composition on amylase production by some starch‐degrading yeasts , 1984 .

[70]  P. Thammarutwasik,et al.  Alcoholic fermentation of sorghum without cooking. , 1986, Biotechnology and bioengineering.

[71]  I. Yamashita,et al.  Cloning and expression of theSaccharomycopsis fibuligera glucoamylase gene inSaccharomyces cerevisiae , 1985, Applied Microbiology and Biotechnology.

[72]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[73]  A. Nasim,et al.  Direct and quantitative conversion of starch to ethanol by the yeast Schwanniomyces alluvius , 1982, Biotechnology Letters.

[74]  D. McCalla,et al.  Effect of germ and fiber removal on production of ethanol from corn , 2004, Applied biochemistry and biotechnology.

[75]  S. Oliver,et al.  Production of Ethanol from Starch by Respiration-Deficient Recombinant Saccharomyces cerevisiae , 2005, Applied and Environmental Microbiology.

[76]  M. Moresi,et al.  Investigation on the operating, variables of potato starch fermentation by Schwanniomyces castellii , 1983, European journal of applied microbiology and biotechnology.

[77]  I. S. Pretorius,et al.  One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing α-amylase, glucoamylase and pullulanase , 1995, Applied Microbiology and Biotechnology.

[78]  Brian H. Davison,et al.  Ethanol production from corn starch in a fluidized-bed bioreactor , 1999, Applied biochemistry and biotechnology.

[79]  G. Stewart,et al.  Genetic manipulation of brewing and related yeast strains , 1984 .

[80]  Yoshikazu Tanaka,et al.  Cloning and Expression of theRhizopusGlucoamylase Gene in Yeast , 1985 .

[81]  H. Verachtert,et al.  Purification and characterization of extracellular alpha-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. , 1987, European journal of biochemistry.

[82]  S. Ueda,et al.  Alcoholic Fermentation of Sweet Potato without Cooking , 1982 .

[83]  M. Holland,et al.  Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae , 1985, Science.

[84]  H. Verachtert,et al.  Purification and characterization of an extracellular glucoamylase from the yeastCandida tsukubaensis CBS 6389 , 2006, Antonie van Leeuwenhoek.

[85]  H. Tamaki Genetic analysis of intergeneric hybrids obtained by protoplast fusion in yeasts , 2004, Current Genetics.

[86]  M. Ueda,et al.  Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface , 1999, Applied Microbiology and Biotechnology.

[87]  S. Gestrelius POTENTIAL APPLICATION OF IMMOBILIZED VIABLE CELLS IN THE FOOD INDUSTRY: MALOLACTIC FERMENTATION OF WINE , 1982 .

[88]  H. Verachtert,et al.  Purification and Characterization of Extracellular Amylolytic Enzymes from the Yeast Filobasidium capsuligenum , 1985, Applied and environmental microbiology.

[89]  S. Balaz,et al.  Fermentation of starch to ethanol by a co-culture of Saccharomycopsis fibuligera and Saccharomyces cerevisiae , 1993, World journal of microbiology & biotechnology.

[90]  I. Evans,et al.  Sodium phosphate enhancement of starch hydrolysis by a diastatic strain of Saccharomyces cerevisiae , 1988, Biotechnology Letters.

[91]  J. Spencer,et al.  Genetic improvement of industrial yeasts. , 1983, Annual review of microbiology.

[92]  B. Janderová,et al.  Hybrid Strains of brewer’s yeast obtained by protoplast fusion , 1986, Folia Microbiologica.

[93]  C. Laluce,et al.  Development of Rapidly Fermenting Strains of Saccharomyces diastaticus for Direct Conversion of Starch and Dextrins to Ethanol , 1984, Applied and environmental microbiology.

[94]  H. Verachtert,et al.  Secretion of α-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans , 1986 .

[95]  R. Tubb,et al.  A strain of Saccharomyces cerevisiae which grows efficiently on starch , 1985 .

[96]  B. Svensson,et al.  Expression of cDNAs encoding barley alpha-amylase 1 and 2 in yeast and characterization of the secreted proteins. , 1990, Gene.

[97]  K. Ettayebi,et al.  Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of alpha-amylase. , 2007, Bioresource technology.

[98]  B. Svensson,et al.  Identification of an essential tryptophanyl residue in the primary structure of glucoamylase G2 from aspergillus niger , 1984 .

[99]  H. Iefuji,et al.  Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. , 1996, The Biochemical journal.

[100]  J. Hammond Genetically‐modified brewing yeasts for the 21st century. Progress to date , 1995, Yeast.

[101]  T. Satyanarayana,et al.  Medium optimization for glucoamylase production by a yeast, Pichia subpelliculosa ABWF-64, in submerged cultivation , 2001 .

[102]  P. Galzy,et al.  Ethanol inhibition of growth, fermentation and starch hydrolysis in Schwanniomyces castellii , 1986 .

[103]  H. El-Enshasy,et al.  Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds , 2002, Journal of basic microbiology.

[104]  F. Clementi,et al.  α-Amylase and glucoamylase production by Schwanniomyces castellii , 2004, Antonie van Leeuwenhoek.

[105]  A. Jimenez,et al.  Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. , 2001, FEMS microbiology letters.

[106]  R. Korus,et al.  A model for continuous fermentations with amylolytic yeasts , 1989, Biotechnology and bioengineering.

[107]  P. Manzanares,et al.  Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. , 2005, Journal of biotechnology.

[108]  Ying-chun Liu,et al.  Co-immobilization of three strains of microorganisms and its application in ethanol production from raw starch under unsterile conditions , 1993 .

[109]  I. Pretorius,et al.  Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the α‐amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera , 2003, Biotechnology and bioengineering.

[110]  F. Clementi,et al.  Protein production by Schwanniomyces castellii on starchy substrates, in liquid and solid cultivation , 2007 .

[111]  B. Gogoi,et al.  Production, purification and characterization of an α-amylase produced by Saccharomycopsis fibuligera , 1987 .

[112]  P. Galzy,et al.  Strain selection for the purpose of alcohol production from starch substrates , 1982, Biotechnology Letters.

[113]  I. S. Pretorius,et al.  Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae. , 1991, Gene.

[114]  Montesinos,et al.  Production of alcohol from raw wheat flour by Amyloglucosidase and Saccharomyces cerevisiae. , 2000, Enzyme and microbial technology.

[115]  B. A. Searle,et al.  REGULATION OF AMYLOGLUCOSIDASE PRODUCTION BY SACCHAROMYCES DIASTATICUS , 1981 .

[116]  M. Kenichi,et al.  Expression of human salivary α-amylase gene in Saccharomyces cerevisiae and its secretion using the mammalian signal sequence , 1986 .

[117]  P. Buckel,et al.  Cloning and characterization of Baker's yeast α‐glucosidase: Over‐expression in a yeast strain devoid of vacuolar proteinases , 1989 .

[118]  P. Nigam,et al.  Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae , 1995, Journal of basic microbiology.

[119]  C. Hollenberg,et al.  Improvement of baker's and brewer's yeast by gene technology , 1990 .

[120]  B. K. Lonsane,et al.  Novel technique for saccharification of cassava fibrous waste for alcohol production. , 1987 .

[121]  B. Saharan,et al.  Fermentation of starch to ethanol by an amylolytic yeast Saccharomyces diastaticus SM-10. , 2002, Indian journal of experimental biology.

[122]  Takehiko Yamamoto,et al.  Ethanol Fermentation of Uncooked Sweet Potato with the Application of Enzymes , 1981 .

[123]  I. S. Pretorius,et al.  The glucoamylase multigene family in Saccharomyces cerevisiae var. diastaticus: an overview. , 1991, Critical reviews in biochemistry and molecular biology.

[124]  P. Galzy,et al.  Effect of medium composition on excretion and biosynthesis of the amylases of Schwanniomyces castellii , 1980, European Journal of Applied Microbiology and Biotechnology.

[125]  W. M. Ingledew,et al.  Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes , 1982, Applied and environmental microbiology.

[126]  P. Meaden,et al.  PROPERTIES OF A GENETICALLY‐ENGINEERED DEXTRIN‐FERMENTING STRAIN OF BREWERS' YEAST , 1988 .

[127]  C. Hollenberg,et al.  Regulated overproduction of α-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis , 1989, Current Genetics.

[128]  N. Uden,et al.  Selective isolation of depressed mutants of an α‐amylase yeast by the use of 2‐deoxyglucose , 1980 .

[129]  M. Stowers,et al.  Enhancing profitability of dry mill ethanol plants , 2005, Applied Biochemistry and Biotechnology.

[130]  B. Saha,et al.  Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation. , 1983, Biotechnology and bioengineering.

[131]  F. H. White,et al.  CONTINUOUS FERMENTATION BY IMMOBILIZED BREWERS YEAST , 1978 .

[132]  M. Hansen,et al.  CONSTRUCTION OF YEAST STRAINS FOR THE PRODUCTION OF LOW‐CARBOHYDRATE BEER , 1990 .

[133]  G. Stewart,et al.  Efficiency of genetically engineered yeast in the production of ethanol from dextrinized cassava starch , 1986, Biotechnology Letters.

[134]  D. Pejin,et al.  Immobilization ofSaccharomyces diastaticus on wood chips for ethanol production , 2008, Folia Microbiologica.

[135]  L. Gonçalves,et al.  Study of biocatalyst to produce ethanol from starch , 2000, Applied biochemistry and biotechnology.

[136]  Teun Boekhout,et al.  The yeasts : a taxonomic study , 1972 .

[137]  B. A. Searle,et al.  A rapid method for recognising strains of yeast able to hydrolyse starch or dextrin , 1981 .

[138]  C. A. Reddy,et al.  Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae , 1986, Applied and environmental microbiology.

[139]  L. I. Figueroa,et al.  Alcoholic fermentation of starch containing media using yeast protoplast fusion products , 1985, Biotechnology Letters.

[140]  H. Verachtert,et al.  Regulation of the amylase secretion by the yeast Filobasidium capsuligenum and a 2-deoxy-d-glucose resistant mutant , 2004, Applied Microbiology and Biotechnology.

[141]  S. Shioya,et al.  Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation. , 2007, Journal of bioscience and bioengineering.