Multi-Color Pebble Motion on Graphs

We consider a graph with n vertices, and p<n pebbles of m colors. A pebble move consists of transferring a pebble from its current host vertex to an adjacent unoccupied vertex. The problem is to move the pebbles to a given new color arrangement.We study the feasibility version of the problem—does a given instance have a solution? We use an algorithm of Auletta et al. (Algorithmica 23:223–245, 1999) for the problem where each pebble has a distinct color to give a linear time algorithm for the feasibility decision problem on a general graph.

[1]  János Pach,et al.  Pushing squares around , 2004, SCG '04.

[2]  Richard M. Wilson,et al.  Graph puzzles, homotopy, and the alternating group☆ , 1974 .

[3]  Uri Zwick,et al.  SOKOBAN and other motion planning problems , 1999, Comput. Geom..

[4]  Erik D. Demaine,et al.  PushPush-k is PSPACE-Complete , 2004 .

[5]  Nancy M. Amato,et al.  Reversing Trains: A Turn of the Century Sorting Problem , 1989, J. Algorithms.

[6]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[7]  Kevin G. Milans,et al.  The Complexity of Graph Pebbling , 2006, SIAM J. Discret. Math..

[8]  Oded Goldreich Finding the Shortest Move-Sequence in the Graph-Generalized 15-Puzzle Is NP-Hard , 2011, Studies in Complexity and Cryptography.

[9]  Giuseppe Persiano,et al.  Optimal Pebble Motion on a Tree , 2001, Inf. Comput..

[10]  Richard Hayes The Sam Loyd 15-Puzzle , 2001 .

[11]  B. Hendrickson,et al.  Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .

[12]  Refael Hassin,et al.  The swapping problem , 1992, Networks.

[13]  M. Albert,et al.  Permutation Patterns: On the permutational power of token passing networks , 2010 .

[14]  Erik D. Demaine,et al.  Playing Games with Algorithms: Algorithmic Combinatorial Game Theory , 2001, MFCS.

[15]  B. Hendrickson,et al.  An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .

[16]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[17]  Samuel Loyd,et al.  Mathematical Puzzles of Sam Loyd , 1959 .

[18]  Aaron Archer,et al.  A Modern Treatment of the 15 Puzzle , 1999 .

[19]  Nicos Christofides,et al.  The Rearrangement of Items in a Warehouse , 1973, Oper. Res..

[20]  Madhu Sudan,et al.  Motion planning on a graph , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[21]  Mimmo Parente,et al.  A Linear Time Algorithm for the Feasibility of Pebble Motion on Trees , 1996, SWAT.

[22]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[23]  Ian Parberry A Real-Time Algorithm for the (n²-1)-Puzzle , 1995, Inf. Process. Lett..

[24]  Paul G. Spirakis,et al.  Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.

[25]  Michael Hoffmann,et al.  Pushing blocks is np-complete for noncrossing solution paths , 2001, CCCG.

[26]  János Pach,et al.  Reconfigurations in Graphs and Grids , 2006, SIAM J. Discret. Math..

[27]  Alexander Reinefeld,et al.  Complete Solution of the Eight-Puzzle and the Benefit of Node Ordering in IDA , 1993, IJCAI.