The Imager for Mars Pathfinder experiment

The imager for Mars Pathfinder (IMP), a stereoscopic, multispectral camera, is described in terms of its capabilities for studying the Martian environment. The camera's two eyes, separated by 15.0 cm, provide the camera with range-finding ability. Each eye illuminates half of a single CCD detector with a field of view of 14.4×14.0° and has 12 selectable filters. The ƒ/18 optics have a large depth of field, and no focussing mechanism is required; a mechanical shutter is avoided by using the frame transfer capability of the 512×512 CCD. The resolving power of the camera, 0.98 mrad/pixel, is approximately the same as the Viking Lander cameras; however, the signal-to-noise ratio for IMP greatly exceeds Viking, approaching 350. This feature along with the stable calibration of the filters between 440 and 1000 nm distinguishes IMP from Viking. Specially designed targets are positioned on the Lander; they provide information on the magnetic properties of wind-blown dust, measure the wind vectors, and provide radiometric standard reflectors for calibration. Also, eight low-transmission filters are included for imaging the Sun directly at multiple wavelengths, giving IMP the ability to measure dust opacity and potentially the water vapor content. Several experiments beyond the requisite color panorama are described in detail: contour mapping of the local terrain, multispectral imaging of the surrounding rock and soil to study local mineralogy, viewing of three wind socks, measuring atmospheric opacity and water vapor content, and estimating the magnetic properties of wind-blown dust. This paper is intended to serve as a guide to understanding the scientific integrity of the IMP data that will be returned from Mars starting on July 4, 1997.

[1]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[2]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[3]  Walter Tollmien,et al.  Über die ausgebildete Turbulenz , 1961 .

[4]  E. Opik,et al.  The Martian Surface , 1966, Science.

[5]  Joshua Lederberg,et al.  Variable features on Mars: Preliminary mariner 9 television results , 1972 .

[6]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[7]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[8]  C. Spitzer,et al.  The Viking magnetic properties experiment - Primary mission results. [on Mars landing sites , 1977 .

[9]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[10]  R. Arvidson,et al.  Differential aeolian redistribution rates on Mars , 1979, Nature.

[11]  R. Arvidson,et al.  Viking magnetic properties experiment - Extended mission results , 1979 .

[12]  Ronald Greeley,et al.  MARS: The North Polar Sand Sea and related wind patterns , 1979 .

[13]  John F. McCauley,et al.  Morphology and distribution of common ‘sand’ dunes on Mars: Comparison with the Earth , 1979 .

[14]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[15]  J. Pollack,et al.  Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols , 1980 .

[16]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[17]  Michael C. Malin,et al.  Surface geology from Viking landers on Mars: A second look , 1984 .

[18]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[19]  H. McSween SNC meteorites: Clues to Martian petrologic evolution? , 1985 .

[20]  L. Frakes,et al.  Geology and genesis of manganese oolite, Chiatura, Georgia, U.S.S.R. , 1985 .

[21]  R. Kirk,et al.  I. Thermal Evolution of Ganymede and Implications for Surface Features. II. Magnetohydrodynamic Constraints on Deep Zonal Flow in the Giant Planets. III. A Fast Finite-Element Algorithm for Two-Dimensional Photoclinometry , 1987 .

[22]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[23]  R. Morris,et al.  Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite , 1989 .

[24]  Raymond E. Arvidson,et al.  The Martian surface as imaged, sampled, and analyzed by the Viking landers , 1989 .

[25]  Iron Mineralogy of a Hawaiian Palagonitic Soil with Mars-like Spectral and Magnetic Properties , 1990 .

[26]  R. Morris,et al.  Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil , 1990 .

[27]  J. Bell,et al.  Observational evidence of crystalline iron oxides on Mars , 1990 .

[28]  R. Morris,et al.  Matrix effects for reflectivity spectra of dispersed nanophase (superparamagnetic) hematite with application to Martian spectral data , 1990 .

[29]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm. , 1992 .

[30]  Ronald Greeley,et al.  Martian aeolian processes, sediments, and features. , 1992 .

[31]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[32]  Richard W. Zurek,et al.  Interannual variability of planet-encircling dust storms on Mars , 1993 .

[33]  A. Vasavada,et al.  Microcraters on Mars: Evidence for past climate variations , 1993 .

[34]  Richard W. Zurek,et al.  An analysis of the history of dust activity on Mars , 1993 .

[35]  A. Banin,et al.  The nanophase iron mineral(s) in Mars soil. , 1993, Journal of geophysical research.

[36]  Peter C. Thomas,et al.  Polar margin dunes and winds on Mars , 1995 .

[37]  F. Gliem,et al.  Enhancement of IMP lossy image data compression using LCT , 1995, DCC 1995.

[38]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[39]  Peter W. H. Smith,et al.  Descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe of Titan , 1996, Optics & Photonics.