A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides

A numerical algorithm is proposed to explore in a systematic way the trajectories of the eigenvalues of non-Hermitian matrices in the parametric space and exploit this in order to find the locations of defective eigenvalues in the complex plane. These non-Hermitian degeneracies also called exceptional points (EP) have raised considerable attention in the scientific community as these can have a great impact in a variety of physical problems. The method requires the computation of successive derivatives of two selected eigenvalues with respect to the parameter so that, after recombination, regular functions can be constructed. This algebraic manipulation permits the localization of exceptional points (EP), using standard root-finding algorithms and the computation of the associated Puiseux series up to an arbitrary order. This representation, which is associated with the topological structure of Riemann surfaces allows to efficiently approximate the selected pair in a certain neighbourhood of the EP. Practical applications dealing with guided acoustic waves propagating in straight ducts with absorbing walls and in periodic guiding structures are given to illustrate the versatility of the proposed method and its ability to handle large size matrices arising from finite element discretization techniques. The fact that EPs are associated with optimal dissipative treatments in the sense that they should provide best modal attenuation is also discussed.

[1]  F. Capolino,et al.  Exceptional Points of Degeneracy and Branch Points for Coupled Transmission Lines—Linear-Algebra and Bifurcation Theory Perspectives , 2019, IEEE Transactions on Antennas and Propagation.

[2]  R. Uzdin,et al.  Finding and pinpointing exceptional points of an open quantum system , 2010 .

[3]  W. Bi,et al.  New insights into mode behaviours in waveguides with impedance boundary conditions , 2015, 1511.05508.

[4]  Steven G. Johnson,et al.  Scalable computation of Jordan chains , 2017, 1704.05837.

[5]  J. Main,et al.  Exceptional points in the spectra of atoms in external fields , 2009, 0902.4777.

[6]  Alexei A. Mailybaev,et al.  Interaction of eigenvalues in multi-parameter problems , 2003 .

[7]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[8]  N. Moiseyev,et al.  Atomic and Molecular Complex Resonances from Real Eigenvalues Using Standard (Hermitian) Electronic Structure Calculations. , 2015, The journal of physical chemistry. A.

[9]  A. Jáuregui,et al.  Energy eigenvalue surfaces close to a degeneracy of unbound states: crossings and anticrossings of energies and widths. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  L. Dieci,et al.  Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters , 2014 .

[11]  A. Andrew Convergence of an Iterative Method for Derivatives of Eigensystems , 1978 .

[12]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[13]  Hauke Gravenkamp,et al.  Analyzing modal behavior of guided waves using high order eigenvalue derivatives. , 2016, Ultrasonics.

[14]  I. David Abrahams,et al.  An Orthogonality Relation for a Class of Problems with High-Order Boundary Conditions , 1999 .

[15]  Roger C. E. Tan,et al.  Accelerating the convergence of an iterative method for derivatives of eigensystems , 1986 .

[16]  Jean-François Mercier,et al.  Non‐reflecting boundary conditions for acoustic propagation in ducts with acoustic treatment and mean flow , 2011 .

[17]  Peter Lindqvist,et al.  A NONLINEAR EIGENVALUE PROBLEM , 2004 .

[18]  Yuan Wang,et al.  Demonstration of a large-scale optical exceptional point structure. , 2014, Optics express.

[19]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[20]  Sondipon Adhikari,et al.  Random matrix eigenvalue problems in structural dynamics , 2007 .

[21]  H. G. ter Morsche,et al.  Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem , 2006 .

[22]  Thomas-C. Jagau,et al.  Locating Exceptional Points on Multidimensional Complex-Valued Potential Energy Surfaces. , 2018, The journal of physical chemistry letters.

[23]  Richard B. Nelson,et al.  Simplified calculation of eigenvector derivatives , 1976 .

[24]  Wim Michiels,et al.  Computing all Pairs (λ, μ) Such That λ is a Double Eigenvalue of A+μB , 2011, SIAM J. Matrix Anal. Appl..

[25]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[26]  N. Moiseyev,et al.  Localization of exceptional points with Padé approximants , 2010 .

[27]  Michael S. Triantafyllou,et al.  Frequency coalescence and mode localization phenomena: A geometric theory , 1991 .

[28]  Wenping Bi,et al.  Sound attenuation optimization using metaporous materials tuned on exceptional points. , 2017, The Journal of the Acoustical Society of America.

[29]  V. Laude,et al.  Material loss influence on the complex band structure and group velocity in phononic crystals , 2011 .

[30]  E. Brändas Non-hermitian quantum mechanics , 2012 .

[31]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[32]  E. L. Shenderov Helmholtz equation solutions corresponding to multiple roots of the dispersion equation for a waveguide with impedance walls , 2000 .

[33]  O. N. Kirillov,et al.  Coupling of eigenvalues of complex matrices at diabolic and exceptional points , 2005 .

[34]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[35]  J. Nuttall,et al.  THE CONVERGENCE OF PADÉ APPROXIMANTS TO FUNCTIONS WITH BRANCH POINTS , 1977 .

[36]  Katharina Weiss,et al.  Multiparameter Stability Theory With Mechanical Applications , 2016 .

[37]  Yee-Yeen Chu,et al.  Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors , 1975 .

[38]  Richard O. Akinola,et al.  The calculation of the distance to a nearby defective matrix , 2012, Numer. Linear Algebra Appl..

[39]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[40]  A. Muhic,et al.  A method for computing all values λ such that A+λB has a multiple eigenvalue , 2014 .

[41]  S. Christiansen,et al.  On truncated Taylor series and the position of their spurious zeros , 2006 .

[42]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[43]  Alexei A. Mailybaev,et al.  Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters , 2005, Numer. Linear Algebra Appl..

[44]  Brian J. Tester,et al.  The optimization of modal sound attenuation in ducts, in the absence of mean flow , 1973 .

[45]  H. Baumgärtel Analytic perturbation theory for matrices and operators , 1985 .

[46]  Maxim L. Yattselev,et al.  Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials , 2011, 1109.0332.

[47]  J. F. Allard,et al.  Propagation of sound in porous media , 1993 .

[48]  Alastair Spence,et al.  Photonic band structure calculations using nonlinear eigenvalue techniques , 2005 .

[49]  Tosio Kato Perturbation theory for linear operators , 1966 .

[50]  G. Theocharis,et al.  Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption , 2016, 1611.03258.

[51]  Daniel W. Hook,et al.  PT Symmetry , 2018 .

[52]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[53]  W. Heiss,et al.  Avoided level crossing and exceptional points , 1990 .

[54]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[55]  L. Laurent,et al.  Stochastic model reduction for robust dynamical characterization of structures with random parameters , 2017 .

[56]  A. Spence,et al.  The computation of Jordan blocks in parameter-dependent matrices , 2014 .

[57]  Aaron Welters,et al.  On Explicit Recursive Formulas in the Spectral Perturbation Analysis of a Jordan Block , 2009, SIAM J. Matrix Anal. Appl..

[58]  Benoit Nennig,et al.  A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow. , 2010, The Journal of the Acoustical Society of America.

[59]  Matthias Feldmaier,et al.  Rydberg systems in parallel electric and magnetic fields: an improved method for finding exceptional points , 2016, 1602.00909.